Abstract
Functional graph grammars are finite devices which generate the class of regular automata. We recall the notion of synchronization by grammars, and for any given grammar we consider the class of languages recognized by automata generated by all its synchronized grammars. The synchronization is an automaton-related notion: all grammars generating the same automaton synchronize the same languages. When the synchronizing automaton is unambiguous, the class of its synchronized languages forms an effective boolean algebra lying between the classes of regular languages and unambiguous context-free languages. We additionally provide sufficient conditions for such classes to be closed under concatenation and its iteration.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Babai, L. (ed.) 36th STOC, ACM Proceedings, pp. 202–211 (2004)
Berstel, J.: Transductions and context-free languages. In: Teubner (ed.), pp. 1–278 (1979)
Berstel, J., Boasson, L.: Balanced grammars and their languages. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 3–25. Springer, Heidelberg (2002)
Caucal, D.: Synchronization of pushdown automata. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 120–132. Springer, Heidelberg (2006)
Caucal, D.: Deterministic graph grammars. In: Flum, J., Grädel, E., Wilke, T. (eds.) Texts in Logic and Games 2, pp. 169–250. Amsterdam University Press (2007)
Caucal, D.: Boolean algebras of unambiguous context-free languages. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) 28th FSTTCS, Dagstuhl Research Online Publication Server (2008)
Caucal, D., Hassen, S.: Synchronization of grammars. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) Computer Science – Theory and Applications. LNCS, vol. 5010, pp. 110–121. Springer, Heidelberg (2008)
Harrison, M.: Introduction to formal language theory. Addison-Wesley, Reading (1978)
Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL recognition. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 422–432. Springer, Heidelberg (1980)
Muller, D., Schupp, P.: The theory of ends, pushdown automata, and second-order logic. Theoretical Computer Science 37, 51–75 (1985)
Nowotka, D., Srba, J.: Height-deterministic pushdown automata. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 125–134. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Caucal, D. (2009). Synchronization of Regular Automata. In: Královič, R., Niwiński, D. (eds) Mathematical Foundations of Computer Science 2009. MFCS 2009. Lecture Notes in Computer Science, vol 5734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03816-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-03816-7_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03815-0
Online ISBN: 978-3-642-03816-7
eBook Packages: Computer ScienceComputer Science (R0)