Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Representing Groups on Graphs

  • Conference paper
Mathematical Foundations of Computer Science 2009 (MFCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5734))

Abstract

In this paper we formulate and study the problem of representing groups on graphs. We show that with respect to polynomial time Turing reducibility, both abelian and solvable group representability are all equivalent to graph isomorphism, even when the group is presented as a permutation group via generators. On the other hand, the representability problem for general groups on trees is equivalent to checking, given a group G and n, whether a nontrivial homomorphism from G to S n exists. There does not seem to be a polynomial time algorithm for this problem, in spite of the fact that tree isomorphism has polynomial time algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arvind, V., Kurur, P.P.: Graph Isomorphism is in SPP. In: 43rd Annual Symposium of Foundations of Computer Science, pp. 743–750. IEEE, Los Alamitos (2002)

    Google Scholar 

  2. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pp. 171–183 (1983)

    Google Scholar 

  3. Furst, M.L., Hopcroft, J.E., Luks, E.M.: Polynomial-time algorithms for permutation groups. In: IEEE Symposium on Foundations of Computer Science, pp. 36–41 (1980)

    Google Scholar 

  4. Hall Jr., M.: The Theory of Groups, 1st edn. The Macmillan Company, New York (1959)

    MATH  Google Scholar 

  5. Joyner, W.D.: Real world applications of representation theory of non-abelian groups, http://www.usna.edu/Users/math/wdj/repn_thry_appl.htm

  6. Köbler, J., Schöning, U., Torán, J.: Graph isomorphism is low for PP. Computational Complexity 2(4), 301–330 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mathon, R.: A note on graph isomorphism counting problem. Information Processing Letters 8(3), 131–132 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Schöning, U.: Graph isomorphism is in the low hierarchy. In: Symposium on Theoretical Aspects of Computer Science, pp. 114–124 (1987)

    Google Scholar 

  9. Sims, C.C.: Computational methods in the study of permutation groups. Computational problems in Abstract Algebra, 169–183 (1970)

    Google Scholar 

  10. Sims, C.C.: Some group theoretic algorithms. Topics in Algebra 697, 108–124 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wielandt, H.: Finite Permutation Groups. Academic Press, New York (1964)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dutta, S., Kurur, P.P. (2009). Representing Groups on Graphs. In: Královič, R., Niwiński, D. (eds) Mathematical Foundations of Computer Science 2009. MFCS 2009. Lecture Notes in Computer Science, vol 5734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03816-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03816-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03815-0

  • Online ISBN: 978-3-642-03816-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics