Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Municipal Creditworthiness Modelling by Kernel-Based Approaches with Supervised and Semi-supervised Learning

  • Conference paper
Engineering Applications of Neural Networks (EANN 2009)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 43))

Abstract

The paper presents the modelling possibilities of kernel-based approaches on a complex real-world problem, i.e. municipal creditworthiness classification. A model design includes data pre-processing, labelling of individual parameters’ vectors using expert knowledge, and the design of various support vector machines with supervised learning and kernel-based approaches with semi-supervised learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Olej, V., Hajek, P.: Hierarchical Structure of Fuzzy Inference Systems Design for Municipal Creditworthiness Modelling. WSEAS Transactions on Systems and Control 2, 162–169 (2007)

    Google Scholar 

  2. Olej, V., Hajek, P.: Modelling of Municipal Rating by Unsupervised Methods. WSEAS Transactions on Systems 7, 1679–1686 (2006)

    Google Scholar 

  3. Hajek, P., Olej, V.: Municipal Creditworthiness Modelling by Kohonen’s Self-organizing Feature Maps and LVQ Neural Networks. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 52–61. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Hajek, P., Olej, V.: Municipal Creditworthiness Modelling by Kohonen’s Self-organizing Feature Maps and Fuzzy Logic Neural Networks. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008, Part I. LNCS (LNAI), vol. 5163, pp. 533–542. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  6. Abe, S.: Support Vector Machines for Pattern Classification. Springer, London (2005)

    MATH  Google Scholar 

  7. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall Inc., New Jersey (1999)

    MATH  Google Scholar 

  8. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  9. Huang, T.M., Kecman, V., Kopriva, I.: Kernel Based Algorithms for Mining Huge Data Sets. In: Supervised, Semi-supervised, and Unsupervised Learning. Studies in Computational Intelligence. Springer, Heidelberg (2006)

    Google Scholar 

  10. Bennett, K.P., Demiriz, A.: Semi-supervised Support Vector Machines. In: Int. Conf. on Advances in Neural Information Processing Systems, vol. 2. MIT Press, Cambridge (1999)

    Google Scholar 

  11. Chapelle, O., Scholkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press, Cambridge (2006)

    Book  Google Scholar 

  12. Zhu, X.: Semi-Supervised Learning. Literature Survey, http://www.cs.wisc.edu/~jerryzhu/pub/ssl_survey (2005)

  13. Klose, A.: Extracting Fuzzy Classification Rules from Partially Labelled Data. Soft Computing 8, 417–427 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hajek, P., Olej, V. (2009). Municipal Creditworthiness Modelling by Kernel-Based Approaches with Supervised and Semi-supervised Learning. In: Palmer-Brown, D., Draganova, C., Pimenidis, E., Mouratidis, H. (eds) Engineering Applications of Neural Networks. EANN 2009. Communications in Computer and Information Science, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03969-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03969-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03968-3

  • Online ISBN: 978-3-642-03969-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics