Abstract
The paper presents the modelling possibilities of kernel-based approaches on a complex real-world problem, i.e. municipal creditworthiness classification. A model design includes data pre-processing, labelling of individual parameters’ vectors using expert knowledge, and the design of various support vector machines with supervised learning and kernel-based approaches with semi-supervised learning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Olej, V., Hajek, P.: Hierarchical Structure of Fuzzy Inference Systems Design for Municipal Creditworthiness Modelling. WSEAS Transactions on Systems and Control 2, 162–169 (2007)
Olej, V., Hajek, P.: Modelling of Municipal Rating by Unsupervised Methods. WSEAS Transactions on Systems 7, 1679–1686 (2006)
Hajek, P., Olej, V.: Municipal Creditworthiness Modelling by Kohonen’s Self-organizing Feature Maps and LVQ Neural Networks. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 52–61. Springer, Heidelberg (2008)
Hajek, P., Olej, V.: Municipal Creditworthiness Modelling by Kohonen’s Self-organizing Feature Maps and Fuzzy Logic Neural Networks. In: KĹŻrková, V., Neruda, R., KoutnĂk, J. (eds.) ICANN 2008, Part I. LNCS (LNAI), vol. 5163, pp. 533–542. Springer, Heidelberg (2008)
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)
Abe, S.: Support Vector Machines for Pattern Classification. Springer, London (2005)
Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall Inc., New Jersey (1999)
Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)
Huang, T.M., Kecman, V., Kopriva, I.: Kernel Based Algorithms for Mining Huge Data Sets. In: Supervised, Semi-supervised, and Unsupervised Learning. Studies in Computational Intelligence. Springer, Heidelberg (2006)
Bennett, K.P., Demiriz, A.: Semi-supervised Support Vector Machines. In: Int. Conf. on Advances in Neural Information Processing Systems, vol. 2. MIT Press, Cambridge (1999)
Chapelle, O., Scholkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press, Cambridge (2006)
Zhu, X.: Semi-Supervised Learning. Literature Survey, http://www.cs.wisc.edu/~jerryzhu/pub/ssl_survey (2005)
Klose, A.: Extracting Fuzzy Classification Rules from Partially Labelled Data. Soft Computing 8, 417–427 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hajek, P., Olej, V. (2009). Municipal Creditworthiness Modelling by Kernel-Based Approaches with Supervised and Semi-supervised Learning. In: Palmer-Brown, D., Draganova, C., Pimenidis, E., Mouratidis, H. (eds) Engineering Applications of Neural Networks. EANN 2009. Communications in Computer and Information Science, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03969-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-03969-0_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03968-3
Online ISBN: 978-3-642-03969-0
eBook Packages: Computer ScienceComputer Science (R0)