Abstract
This paper presents a feasible decision procedure for the equality of parallel arrows in the initial category with finite products and coproducts. The algorithm, in particular, handles the “additive units” and demonstrates that the complications introduced by the presence of these units can be managed in an efficient manner.
This problem is directly related to the problem of determining the equivalence between (finite) processes communicating on a two-way channel.
Research partially supported by the project SOAPDC no. ANR-05-JCJC-0142.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lambek, J.: Deductive systems and categories. I. Syntactic calculus and residuated categories. Math. Systems Theory 2, 287–318 (1968)
Došen, K.: Cut elimination in categories. Trends in Logic—Studia Logica Library, vol. 6. Kluwer Academic Publishers, Dordrecht (1999)
Cockett, J.R.B., Seely, R.A.G.: Finite sum-product logic. Theory Appl. Categ. 8, 63–99 (2001) (electronic)
Hu, H., Joyal, A.: Coherence completions of categories. Theoret. Comput. Sci. 227(1-2), 153–184 (1999), Linear logic, I (Tokyo, 1996)
Hughes, D.J.D.: A cannonical graphical syntax for non-empty finite products and sums. Technical report, Stanford University (December 2002), http://boole.stanford.edu/~dominic/papers
Došen, K., Petrić, Z.: Bicartesian coherence revisited. In: Ognjanovic, Z. (ed.) Logic in Computer Science, Zbornik Radova, vol. 12 (2009), arXiv:0711.4961
Hughes, D.J.D., van Glabbeek, R.J.: Proof nets for unit-free multiplicative-additive linear logic (extended abstract). In: LICS, pp. 1–10. IEEE Computer Society, Los Alamitos (2003)
Hu, H.: Contractible coherence spaces and maximal maps. Electr. Notes Theor. Comput. Sci. 20 (1999)
Joyal, A.: Free lattices, communication and money games. In: Logic and scientific methods (Florence, 1995). Synthese Lib., vol. 259, pp. 29–68. Kluwer Acad. Publ, Dordrecht (1997)
Santocanale, L.: Free μ-lattices. J. Pure Appl. Algebra 168(2-3), 227–264 (2002), Category theory 1999 (Coimbra)
Blass, A.: A game semantics for linear logic. Ann. Pure Appl. Logic 56(1-3), 183–220 (1992)
Abramsky, S., Jagadeesan, R.: Games and full completeness for multiplicative linear logic. J. of Symb. Logic 59(2), 543–574 (1994)
Cockett, J.R.B., Pastro, C.A.: A language for multiplicative-additive linear logic. Electr. Notes Theor. Comput. Sci. 122, 23–65 (2005)
Cockett, J.R.B., Pastro, C.A.: The logic of message passing. Science of Computer Programming 74(8), 498–533 (2009)
Mac Lane, S.: Categories for the working mathematician, 2nd edn. Graduate Texts in Mathematics, vol. 5. Springer, New York (1998)
Joyal, A.: Free bicomplete categories. C. R. Math. Rep. Acad. Sci. Canada 17(5), 219–224 (1995)
Joyal, A.: Free bicompletion of enriched categories. C. R. Math. Rep. Acad. Sci. Canada 17(5), 213–218 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cockett, R., Santocanale, L. (2009). On the Word Problem for \({\it \Sigma\Pi}\)-Categories, and the Properties of Two-Way Communication . In: Grädel, E., Kahle, R. (eds) Computer Science Logic. CSL 2009. Lecture Notes in Computer Science, vol 5771. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04027-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-04027-6_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04026-9
Online ISBN: 978-3-642-04027-6
eBook Packages: Computer ScienceComputer Science (R0)