Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Reconstructing 3-Colored Grids from Horizontal and Vertical Projections Is NP-hard

  • Conference paper
Algorithms - ESA 2009 (ESA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5757))

Included in the following conference series:

  • 1799 Accesses

Abstract

We consider the problem of coloring a grid using k colors with the restriction that in each row and each column has an specific number of cells of each color. In an already classical result, Ryser obtained a necessary and sufficient condition for the existence of such a coloring when two colors are considered. This characterization yields a linear time algorithm for constructing such a coloring when it exists. Gardner et al. showed that for k ≥ 7 the problem is NP-hard. Afterward Chrobak and Dürr improved this result, by proving that it remains NP-hard for k ≥ 4. We solve the gap by showing that for 3 colors the problem is already NP-hard. Besides we also give some results on tiling tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alpers, A., Rodek, L., Poulsen, H.F., Knudsen, E., Herman, G.T.: Discrete Tomography for Generating Grain Maps of Polycrystals. In: Advances in Discrete Tomography and Its Applications, pp. 271–301. Birkhäuser, Basel (2007)

    Chapter  Google Scholar 

  2. Chrobak, M., Dürr, C.: Reconstructing polyatomic structures from discrete X-rays: NP-completeness proof for three atoms. Theoretical Computer Science 259, 81–98 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chrobak, M., Couperus, P., Dürr, C., Woeginger, G.: On tiling under tomographic constraints. Theoret. Comput. Sci. 290(3), 2125–2136 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dürr, C., Goles, E., Rapaport, I., Rémila, E.: Tiling with bars under tomographic constraints. Theoret. Comput. Sci. 290(3), 1317–1329 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gardner, R., Gritzmann, P., Prangenberg, D.: On the computational complexity of determining polyatomic structures by X-rays. Theoretical Computer Science 233, 91–106 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H.Freeman and Co., New York (1979)

    MATH  Google Scholar 

  7. Kuba, A., Herman, G.T.: Discrete tomography: A Historical Overview. In: Discrete tomography: Foundations, Algorithms and Applications. Birkhäuser, Basel (1999)

    Google Scholar 

  8. Ryser, H.J.: Matrices of zeros and ones. Bull. Am. Math. Soc. 66, 442–464 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  9. Thiant, N.: Constructions et reconstructions de pavages de dominos. PhD thesis, Université Paris 6 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dürr, C., Guiñez, F., Matamala, M. (2009). Reconstructing 3-Colored Grids from Horizontal and Vertical Projections Is NP-hard. In: Fiat, A., Sanders, P. (eds) Algorithms - ESA 2009. ESA 2009. Lecture Notes in Computer Science, vol 5757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04128-0_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04128-0_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04127-3

  • Online ISBN: 978-3-642-04128-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics