Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

System f2lp – Computing Answer Sets of First-Order Formulas

  • Conference paper
Logic Programming and Nonmonotonic Reasoning (LPNMR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5753))

  • 895 Accesses

Abstract

We present an implementation of the general language of stable models proposed by Ferraris, Lee and Lifschitz. Under certain conditions, system f2lp turns a first-order theory under the stable model semantics into an answer set program, so that existing answer set solvers can be used for computing the general language. Quantifiers are first eliminated and then the resulting quantifier-free formulas are turned into rules. Based on the relationship between stable models and circumscription, f2lp can also serve as a reasoning engine for general circumscriptive theories. We illustrate how to use f2lp to compute the circumscriptive event calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 372–379 (2007)

    Google Scholar 

  2. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial Intelligence (to appear, 2010)

    Google Scholar 

  3. Lee, J., Lifschitz, V., Palla, R.: A reductive semantics for counting and choice in answer set programming. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 472–479 (2008)

    Google Scholar 

  4. Lee, J., Palla, R.: Yet another proof of the strong equivalence between propositional theories and logic programs. In: Working Notes of the Workshop on Correspondence and Equivalence for Nonmonotonic Theories (2007)

    Google Scholar 

  5. Kim, T.W., Lee, J., Palla, R.: Circumscriptive event calculus as answer set programming. In: Proceedings of International Joint Conference on Artificial Intelligence, IJCAI (to appear, 2009)

    Google Scholar 

  6. Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic programs. TPLP 7(6), 745–759 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Cabalar, P., Pearce, D., Valverde, A.: Reducing propositional theories in equilibrium logic to logic programs. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS (LNAI), vol. 3808, pp. 4–17. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Shanahan, M.: A circumscriptive calculus of events. Artif. Intell. 77(2), 249–284 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mueller, E.: Commonsense reasoning. Morgan Kaufmann, San Francisco (2006)

    Google Scholar 

  10. Oikarinen, E., Janhunen, T.: circ2dlp - translating circumscription into disjunctive logic programming. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 405–409. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Ferraris, P., Lee, J., Lifschitz, V., Palla, R.: Symmetric splitting in the general theory of stable models. In: Proceedings of International Joint Conference on Artificial Intelligence, IJCAI (to appear, 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, J., Palla, R. (2009). System f2lp – Computing Answer Sets of First-Order Formulas. In: Erdem, E., Lin, F., Schaub, T. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2009. Lecture Notes in Computer Science(), vol 5753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04238-6_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04238-6_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04237-9

  • Online ISBN: 978-3-642-04238-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics