Abstract
Intelligent Visual Surveillance (IVS) systems are becoming a ubiquitous security component as they aim at monitoring, in real time, persistent and transcient activities in specific environments. This paper considers the data association problem arising in IVS systems, which consists in assigning blobs (connected sets of pixels) to tracks (objects being monitored) in order to minimize the distance of the resulting scene to its prediction (which may be obtained with a Kalman filter). It proposes a tabu-search algorithm for this multi-assignment problem that can process more than 11 frames per seconds on standard IVS benchmarks, thus significantly outperforming the state of the art.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angus, J., Zhou, H., Bea, C., Becket-Lemus, L., Klose, J., Tubbs, S.: Genetic algorithms in passive tracking. Technical report, Claremont Graduate School, Math Clinic Report (1993)
Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing [see also IEEE Transactions on Acoustics, Speech, and Signal Processing] 50(2), 174–188 (2002)
Baluja, S.: Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning, Technical Report CMU-CS-94-163, CMU-CS, Pittsburgh, PA (1994)
de Bonet, J.S., Isbell Jr., C.L., Viola, P.: MIMIC: Finding optima by estimating probability densities. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9, p. 424. The MIT Press, Cambridge (1997); Artech House, Inc. (1999)
Content analysis and network delivery architectures, http://www.hitech-projects.com/euprojects/candela/
Cestnik, B.: Estimating probabilities: A crucial task in machine learning. In: ECAI, pp. 147–149 (1990)
Chen, T.P., Haussecker, H., Bovyrin, A., Belenov, R., Rodyushkin, K., Kuranov, A., Eruhimov, V.: Computer vision workload analysis: Case study of video surveillance systems. j-INTEL-TECH-J 9(2), 109–118 (2005)
Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)
Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 564–575 (2003)
Cordon, O., Damas, S.: Image registration with iterated local search. Journal of Heuristics 12(1-2), 73–94 (2006)
University of Ljubljana Machine Vision Group. In: Cvbase 2006 workshop on computer vision based analysis in sport environments (2001), http://vision.fe.uni-lj.si/cvbase06/
Djuric, P.M., Kotecha, J.H., Zhang, J., Huang, Y., Ghirmai, T., Bugallo, M.F., Miguez, J.: Particle filtering. IEEE Signal Processing Magazine, 19–38 (2003)
Ferryman, J.M., Maybank, S.J., Worrall, A.D.: Visual surveillance for moving vehicles. Int. J. Comput. Vision 37(2), 187–197 (2000)
Glover, F., Laguna, M.: Modern Heuristic Techniques for Combinatorial Problems. Blackwell Scientific Publishing, Malden (1993)
Han, M., Xu, W., Tao, H., Gong, Y.: An algorithm for multiple object trajectory tracking. In: CVPR 2004: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 01, pp. 864–871 (2004)
Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE Transactions on Evolutionary Computation 3(4), 287 (1999)
Hillis, D.B.: Using a genetic algorithm for multi-hypothesis tracking. In: ICTAI 1997: Proceedings of the 9th International Conference on Tools with Artificial Intelligence, Washington, DC, USA, p. 112. IEEE Computer Society, Los Alamitos (1997)
Huwer, S., Niemann, H.: 2d-object tracking based on projection-histograms. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 861–876. Springer, Heidelberg (1998)
Kan, W.Y., Krogmeier, J.V.: A generalization of the pda target tracking algorithm using hypothesis clustering. Signals, Systems and Computers 2, 878–882 (1996)
Kincaid, R.K., Laba, K.E.: Reactive tabu search and sensor selection in active structural acoustic control problems. Journal of Heuristics 4(3), 199–220 (1998)
Larraaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Norwell (2001)
Mühlenbein, H.: The equation for response to selection and its use for prediction. Evolutionary Computation 5(3), 303–346 (1997)
Mühlenbein, H., Mahnig, T.: The factorized distribution algorithm for additively decompressed functions. In: 1999 Congress on Evolutionary Computation, pp. 752–759 (1999)
Pisinger, D., Faroe, O., Zachariasen, M.: Guided local search for final placement vlsi design. Journal of Heuristics 9(3), 269–295 (2003)
Patricio, M.A., García, J., Berlanga, A., Molina, J.M.: Video tracking association problem using estimation of distribution algorithms in complex scenes. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4528, pp. 261–270. Springer, Heidelberg (2007)
Regazzoni, C.S., Vernazza, G., Fabri, G. (eds.): Highway traffic monitoring. Kluwer Academic Publishers, Dordrecht (1998)
4th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS 2003), http://www.cvg.cs.rdg.ac.uk/VSPETS/vspets-db.html
Regazzoni, C.S., Vernazza, G., Fabri, G. (eds.): Security in ports: the user requirements for surveillance system. Kluwer Academic Publishers, Norwell (1998)
Stiefelhagen, R., Bernardin, K., Bowers, R., Rose, R.T., Michel, M., Garofolo, J.: The CLEAR 2007 Evaluation. In: Stiefelhagen, R., Bowers, R., Fiscus, J.G. (eds.) RT 2007 and CLEAR 2007. LNCS, vol. 4625, pp. 3–34. Springer, Heidelberg (2008)
Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. The MIT Press, Cambridge (2005)
Xiao-Rong, L., Bar-Shalom, Y.: Multitarget-Multisensor Tracking. In: Principles and Techniques (1995)
Yeddanapudi, M., Bar-Shalom, Y., Pattipati, K.: Imm estimation for multitarget-multisensor air traffic surveillance. Proceedings of the IEEE 85, 80–96 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dotu, I., Van Hentenryck, P., Patricio, M.A., Berlanga, A., García, J., Molina, J.M. (2009). Real-Time Tabu Search for Video Tracking Association. In: Gent, I.P. (eds) Principles and Practice of Constraint Programming - CP 2009. CP 2009. Lecture Notes in Computer Science, vol 5732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04244-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-04244-7_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04243-0
Online ISBN: 978-3-642-04244-7
eBook Packages: Computer ScienceComputer Science (R0)