Abstract
Brain imaging provides a wealth of information that computers can explore at a massive scale. Categorizing the patterns of the human cortex has been a challenging issue for neuroscience. In this paper, we propose a data mining approach leading to the construction of the first computerized dictionary of cortical folding patterns, from a database of 62 brains. The cortical folds are extracted using BrainVisa open software. The standard sulci are manually identified among the folds. 32 sets of sulci covering the cortex are selected. Clustering techniques are further applied to identify in each set the different patterns observed in the population. After affine global normalization, the geometric distance between sulci of two subjects is calculated using the Iterative Closest Point (ICP) algorithm. The dimension of the resulting distance matrix is reduced using Isomap algorithm. Finally, a dedicated hierarchical clustering algorithm is used to extract out the main patterns. This algorithm provides a score which evaluates the strengths of the patterns found. The score is used to rank the patterns for setting up a dictionary to characterize the variability of cortical anatomy.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Régis, J., Mangin, J.F., Ochiai, T., Frouin, V., Rivière, D., Cachia, A., Tamura, M., Samson, Y.: “sulcal root” generic model: a hypothesis to overcome the variability of the human cortex folding patterns. Neurol. Med. Chir. (Tokyo) 45, 1–17 (2005)
Lohmann, G., von Cramon, D.Y., Colchester, A.C.: Deep sulcal landmarks provide an organizing framework for human cortical folding. Cerebral Cortex 18(6), 1415–1420 (2008)
Welker, W.: Why does cerebral cortex fissure and fold? In: Cerebral Cortex, vol. 8B, pp. 3–136. Plenum Press, New York (1988)
Ono, M., Kubik, S., Abernathey, C.D.: Atlas of the cerebral sulci. Thieme (1990)
Lohmann, G., von Cramon, D.Y., Steinmetz, H.: Sulcal variability of twins. Cerebral Cortex 9, 754–763 (1999)
Le Goualher, G., Argenti, A.M., Duyme, M., et al.: Statistical sulcal shape comparisons: application to the detection of genetic encoding of the central sulcus shape. Neuroimage 11(5), 564–574 (2000)
Fischl, B., Rajendran, N., Busa, E., et al.: Cortical folding patterns and predicting cytoarchitecture. Cerebral Cortex 18(8), 1973–1980 (2008)
Friston, K., Ashburner, J., Poline, J.B., Frith, C.D., Heather, J.D., Frackowiak, R.S.J.: Spatial realignment and normalisation of images. Human Brain Mapping 2, 165–189 (1995)
Besl, P.J., McKay, H.D.: A method for registration of 3D shapes. IEEE Trans. PAMI 14(2), 239–256 (1992)
Fischl, B., Sereno, M.I., Tootle, R.B., Dale, A.M.: High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping 8(4), 272–284 (1999)
Thompson, P.M., Woods, R.P., Mega, M.S., Toga, A.W.: Mathematical / computational challenges in creating deformable and probabilistic atlases of the human brain. Human Brain Mapping 9(2), 81–92 (2000)
Lyttelton, O., Boucher, M., Robbins, S., et al.: An unbiased iterative group registration template for cortical surface analysis. Neuroimage 34(4), 1535–1544 (2007)
Sun, Z.Y., Rivière, D., Poupon, F., Régis, J., Mangin, J.-F.: Automatic inference of sulcus patterns using 3D moment invariants. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 515–522. Springer, Heidelberg (2007)
Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)
Sun, Z.Y., Rivière, D., Duchesnay, E., Thirion, B., Poupon, F., Mangin, J.F.: Defining cortical sulcus patterns using partial clustering based on bootstrap and bagging. In: 5th Proc. IEEE ISBI, Paris, France, May 2008, pp. 1629–1632 (2008)
Fraley, C., Raftery, A.E.: Normal mixture modelling and model-based clustering, Technical Report 504. Department of Statistics, University of Washington (2006)
Kaufman, L., Rousseuw, P.J.: In: Finding groups in data. Wiley series in probability and statistics (1990)
Duda, R.O., Hart, P.E., Stork, D.G.: In: Pattern Classification. Wiley, Chichester (2000)
Ashburner, J., Csernansky, J.G., Davatzikos, C., Fox, N.C., Frisoni, G.B., Thompson, P.M.: Computer-assisted imaging to assess brain structure in healthy and diseased brains. The Lancet Neurology 2, 79–88 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sun, Z.Y., Perrot, M., Tucholka, A., Rivière, D., Mangin, JF. (2009). Constructing a Dictionary of Human Brain Folding Patterns. In: Yang, GZ., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009. MICCAI 2009. Lecture Notes in Computer Science, vol 5762. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04271-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-04271-3_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04270-6
Online ISBN: 978-3-642-04271-3
eBook Packages: Computer ScienceComputer Science (R0)