Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Computing with Probabilistic Cellular Automata

  • Conference paper
Artificial Neural Networks – ICANN 2009 (ICANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5769))

Included in the following conference series:

Abstract

We investigate the computational capabilities of probabilistic cellular automata by means of the density classification problem. We find that a specific probabilistic cellular automata rule is able to solve the density classification problem, i.e. classifies binary input strings according to the number of 1’s and 0’s in the string, and show that its computational abilities are related to critical behaviour at a phase transition.

This work was supported by ETH Research Grant TH-04 07-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wolfram, S.: A New Kind of Science. B&T (2002)

    Google Scholar 

  2. Cook, M.: Universality in Elementary Cellular Automata. Complex Systems 15, 1–40 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern Formation. Birkhäuser, Basel (2004)

    MATH  Google Scholar 

  4. Kari, J.: Theory of Cellular Automata: A Survey. Theoretical Computer Science 334, 3–33 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Garzon, M.: Models of Massive Parallelism: Analysis of Cellular Automata and Neural Networks. Springer, Heidelberg (1995)

    Book  MATH  Google Scholar 

  6. Schüle, M., Ott, T., Stoop, R.: Global dynamics of finite cellular automata. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008, Part I. LNCS, vol. 5163, pp. 71–78. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Grinstein, G., Jayaprakash, C.: Statistical Mechanics of Probabilistic Cellular Automata. Phys. Rev. Lett. 55, 2527–2530 (1985)

    Article  MathSciNet  Google Scholar 

  8. Lebowitz, J.L., Maes, C., Speer, E.R.: Statistical Mechanics of Probabilistic Cellular Automata. Journal of Statistical Physics 59, 117–170 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North Holland Publishing Company, Amsterdam (1981)

    MATH  Google Scholar 

  10. Wolfram, S.: Computation Theory of Cellular Automata. Communications in Mathematical Physics 96, 15–57 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Land, M., Belew, R.K.: No Perfect Two-State Cellular Automata for Density Classification Exists. Phys. Rev. Lett. 74, 5148–5150 (1984)

    Article  Google Scholar 

  12. Fuks, H.: Nondeterministic density classification with diffusive probabilistic cellular automata. Phys. Rev. E 66, 066106 (2002)

    Google Scholar 

  13. Fuks, H.: Solution of the density classification problem with two cellular automata rules. Phys. Rev. E 55, R2081 - R2084 (1997)

    Article  Google Scholar 

  14. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. D. Van Nostrand Co. (1960)

    Google Scholar 

  15. Stoop, R., Stoop, N.: Natural computation measured as a reduction of complexity. Chaos 14, 675–679 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schüle, M., Ott, T., Stoop, R. (2009). Computing with Probabilistic Cellular Automata. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04277-5_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04277-5_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04276-8

  • Online ISBN: 978-3-642-04277-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics