Abstract
We investigate the computational capabilities of probabilistic cellular automata by means of the density classification problem. We find that a specific probabilistic cellular automata rule is able to solve the density classification problem, i.e. classifies binary input strings according to the number of 1’s and 0’s in the string, and show that its computational abilities are related to critical behaviour at a phase transition.
This work was supported by ETH Research Grant TH-04 07-2.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wolfram, S.: A New Kind of Science. B&T (2002)
Cook, M.: Universality in Elementary Cellular Automata. Complex Systems 15, 1–40 (2004)
Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern Formation. Birkhäuser, Basel (2004)
Kari, J.: Theory of Cellular Automata: A Survey. Theoretical Computer Science 334, 3–33 (2005)
Garzon, M.: Models of Massive Parallelism: Analysis of Cellular Automata and Neural Networks. Springer, Heidelberg (1995)
Schüle, M., Ott, T., Stoop, R.: Global dynamics of finite cellular automata. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008, Part I. LNCS, vol. 5163, pp. 71–78. Springer, Heidelberg (2008)
Grinstein, G., Jayaprakash, C.: Statistical Mechanics of Probabilistic Cellular Automata. Phys. Rev. Lett. 55, 2527–2530 (1985)
Lebowitz, J.L., Maes, C., Speer, E.R.: Statistical Mechanics of Probabilistic Cellular Automata. Journal of Statistical Physics 59, 117–170 (1990)
Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North Holland Publishing Company, Amsterdam (1981)
Wolfram, S.: Computation Theory of Cellular Automata. Communications in Mathematical Physics 96, 15–57 (1985)
Land, M., Belew, R.K.: No Perfect Two-State Cellular Automata for Density Classification Exists. Phys. Rev. Lett. 74, 5148–5150 (1984)
Fuks, H.: Nondeterministic density classification with diffusive probabilistic cellular automata. Phys. Rev. E 66, 066106 (2002)
Fuks, H.: Solution of the density classification problem with two cellular automata rules. Phys. Rev. E 55, R2081 - R2084 (1997)
Kemeny, J.G., Snell, J.L.: Finite Markov Chains. D. Van Nostrand Co. (1960)
Stoop, R., Stoop, N.: Natural computation measured as a reduction of complexity. Chaos 14, 675–679 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schüle, M., Ott, T., Stoop, R. (2009). Computing with Probabilistic Cellular Automata. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04277-5_53
Download citation
DOI: https://doi.org/10.1007/978-3-642-04277-5_53
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04276-8
Online ISBN: 978-3-642-04277-5
eBook Packages: Computer ScienceComputer Science (R0)