Abstract
The (M, W)-controller, originally studied by Afek, Awerbuch, Plotkin, and Saks, is a basic distributed tool that provides an abstraction for managing the consumption of a global resource in a distributed dynamic network. The input to the controller arrives online in the form of requests presented at arbitrary nodes. A request presented at node u corresponds to the “desire” of some entity to consume one unit of the global resource at u and the controller should handle this request within finite time by either granting it with a permit or denying it. Initially, M permits (corresponding to M units of the global resource) are stored at a designated root node. Throughout the execution permits can be transported from place to place along the network’s links so that they can be granted to requests presented at various nodes; when a permit is granted to some request, it is eliminated from the network. The fundamental rule of an (M, W)-controller is that a request should not be denied unless it is certain that at least M − W permits are eventually granted. The most efficient (M, W)-controller known to date has message complexity \( O (N \log^{2} N \log \frac{M}{W + 1}) \), where N is the number of nodes that ever existed in the network (the dynamic network may undergo node insertions and deletions).
In this paper we establish two new lower bounds on the message complexity of the controller problem. We first prove a simple lower bound stating that any (M, W)-controller must send \( {\it \Omega} (N \log \frac{M}{W + 1}) \) messages. Second, for the important case when W is proportional to M (this is the common case in most applications), we use a surprising reduction from the (centralized) monotonic labeling problem to show that any (M, W)-controller must send \( {\it \Omega} (N \log N) \) messages. In fact, under a long lasting conjecture regarding the complexity of the monotonic labeling problem, this lower bound is improved to a tight \( {\it \Omega} (N \log^{2} N) \). The proof of this lower bound requires that N = O (M) which turns out to be somewhat inevitable due to a new construction of an (M, M / 2) -controller with message complexity O (N log2 M) .
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Afek, Y., Awerbuch, B., Plotkin, S.A., Saks, M.: Local management of a global resource in a communication network. J. ACM 43, 1–19 (1996)
Afek, Y., Ricklin, M.: Sparser: a paradigm for running distributed algorithms. J. Algorithms 14(2), 316–328 (1993)
Afek, Y., Saks, M.E.: Detecting global termination conditions in the face of uncertainty. In: Proc. 7th ACM Symp. on Principles of Distributed Computing (PODC), pp. 109–124 (1987)
Andersson, A., Lai, T.W.: Fast updating of well-balanced trees. In: Proc. 2nd Scandinavian Workshop on Algorithm Theory (SWAT), pp. 111–121 (1990)
Awerbuch, B., Kutten, S., Peleg, D.: Competitive distributed job scheduling (Extended Abstract). In: Proc. 24th ACM Symp. on Theory of Computing (STOC), pp. 571–580 (1992)
Bar-Yehuda, R., Kutten, S.: Fault tolerant distributed majority commitment. J. Algorithms 9(4), 568–582 (1988)
Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two simplified algorithms for maintaining order in a list. In: Proc. 10th Ann. European Symp. on Algorithms (ESA), pp. 152–164 (2002)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press, Cambridge (2001)
Dietz, P.F.: Maintaining Order in a Linked List. In: Proc. 14th ACM Symp. on Theory of Computing (STOC), pp. 122–127 (1982)
Dietz, P.F., Seiferas, J.I., Zhang, J.: A tight lower bound for online monotonic list labeling. SIAM J. Discrete Math. 18(3), 626–637 (2004)
Dietz, P.F., Sleator, D.D.: Two algorithms for maintaining order in a list. In: Proc. 19th ACM Symp. on Theory of Computing (STOC), pp. 365–372 (1987)
Dietz, P.F., Zhang, J.: Lower bounds for monotonic list labeling. In: Proc. 2nd Scandinavian Workshop on Algorithm Theory (SWAT), pp. 173–180 (1990)
Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)
Itai, A., Konheim, A., Rodeh, M.: A sparse table implementation of priority queues. In: Proc. 8th Colloq. on Automata, Languages and Programming (ICALP), pp. 417–431 (1981)
Korman, A.: General compact labeling schemes for dynamic trees. J. Distributed Computing 20(3), 179–193 (2007)
Korman, A.: Improved compact routing schemes for dynamic trees. In: Proc. 27th ACM Symp. on Principles of Distributed Computing (PODC), pp. 185–194 (2008)
Korman, A., Kutten, S.: Controller and estimator for dynamic networks. In: Proc. 26th ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing (PODC), pp. 175–184 (2007)
Korman, A., Peleg, D., Rodeh, Y.: Labeling schemes for dynamic tree networks. Theory Comput. Syst. 37(1), 49–75 (2004)
Korman, A., Peleg, D.: Labeling schemes for weighted dynamic trees. J. Information and Computation 205(12), 1721–1740 (2007)
Lund, C., Reingold, N., Westbrook, J., Yan, D.C.K.: Competitive on-line algorithms for distributed data management. SIAM J. Comput. 28(3), 1086–1111 (1999)
Kutten, S.: Optimal fault-tolerant distributed construction of a spanning forest. Inf. Process. Lett. 27(6), 299–307 (1988)
Tsakalidis, A.K.: Maintaining order in a generalized linked list. Acta Inform. 21, 101–112 (1984)
Willard, D.: Maintaining dense sequential files in a dynamic environment. In: Proc. 14th ACM Symp. on Theory of Computing (STOC), pp. 114–121 (1982)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Emek, Y., Korman, A. (2009). New Bounds for the Controller Problem. In: Keidar, I. (eds) Distributed Computing. DISC 2009. Lecture Notes in Computer Science, vol 5805. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04355-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-04355-0_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04354-3
Online ISBN: 978-3-642-04355-0
eBook Packages: Computer ScienceComputer Science (R0)