Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

New Bounds for the Controller Problem

(Extended Abstract)

  • Conference paper
Distributed Computing (DISC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5805))

Included in the following conference series:

  • 782 Accesses

Abstract

The (M, W)-controller, originally studied by Afek, Awerbuch, Plotkin, and Saks, is a basic distributed tool that provides an abstraction for managing the consumption of a global resource in a distributed dynamic network. The input to the controller arrives online in the form of requests presented at arbitrary nodes. A request presented at node u corresponds to the “desire” of some entity to consume one unit of the global resource at u and the controller should handle this request within finite time by either granting it with a permit or denying it. Initially, M permits (corresponding to M units of the global resource) are stored at a designated root node. Throughout the execution permits can be transported from place to place along the network’s links so that they can be granted to requests presented at various nodes; when a permit is granted to some request, it is eliminated from the network. The fundamental rule of an (M, W)-controller is that a request should not be denied unless it is certain that at least M − W permits are eventually granted. The most efficient (M, W)-controller known to date has message complexity \( O (N \log^{2} N \log \frac{M}{W + 1}) \), where N is the number of nodes that ever existed in the network (the dynamic network may undergo node insertions and deletions).

In this paper we establish two new lower bounds on the message complexity of the controller problem. We first prove a simple lower bound stating that any (M, W)-controller must send \( {\it \Omega} (N \log \frac{M}{W + 1}) \) messages. Second, for the important case when W is proportional to M (this is the common case in most applications), we use a surprising reduction from the (centralized) monotonic labeling problem to show that any (M, W)-controller must send \( {\it \Omega} (N \log N) \) messages. In fact, under a long lasting conjecture regarding the complexity of the monotonic labeling problem, this lower bound is improved to a tight \( {\it \Omega} (N \log^{2} N) \). The proof of this lower bound requires that N = O (M) which turns out to be somewhat inevitable due to a new construction of an (M, M / 2) -controller with message complexity O (N log2 M) .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Afek, Y., Awerbuch, B., Plotkin, S.A., Saks, M.: Local management of a global resource in a communication network. J. ACM 43, 1–19 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Afek, Y., Ricklin, M.: Sparser: a paradigm for running distributed algorithms. J. Algorithms 14(2), 316–328 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Afek, Y., Saks, M.E.: Detecting global termination conditions in the face of uncertainty. In: Proc. 7th ACM Symp. on Principles of Distributed Computing (PODC), pp. 109–124 (1987)

    Google Scholar 

  4. Andersson, A., Lai, T.W.: Fast updating of well-balanced trees. In: Proc. 2nd Scandinavian Workshop on Algorithm Theory (SWAT), pp. 111–121 (1990)

    Google Scholar 

  5. Awerbuch, B., Kutten, S., Peleg, D.: Competitive distributed job scheduling (Extended Abstract). In: Proc. 24th ACM Symp. on Theory of Computing (STOC), pp. 571–580 (1992)

    Google Scholar 

  6. Bar-Yehuda, R., Kutten, S.: Fault tolerant distributed majority commitment. J. Algorithms 9(4), 568–582 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two simplified algorithms for maintaining order in a list. In: Proc. 10th Ann. European Symp. on Algorithms (ESA), pp. 152–164 (2002)

    Google Scholar 

  8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  9. Dietz, P.F.: Maintaining Order in a Linked List. In: Proc. 14th ACM Symp. on Theory of Computing (STOC), pp. 122–127 (1982)

    Google Scholar 

  10. Dietz, P.F., Seiferas, J.I., Zhang, J.: A tight lower bound for online monotonic list labeling. SIAM J. Discrete Math. 18(3), 626–637 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dietz, P.F., Sleator, D.D.: Two algorithms for maintaining order in a list. In: Proc. 19th ACM Symp. on Theory of Computing (STOC), pp. 365–372 (1987)

    Google Scholar 

  12. Dietz, P.F., Zhang, J.: Lower bounds for monotonic list labeling. In: Proc. 2nd Scandinavian Workshop on Algorithm Theory (SWAT), pp. 173–180 (1990)

    Google Scholar 

  13. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Itai, A., Konheim, A., Rodeh, M.: A sparse table implementation of priority queues. In: Proc. 8th Colloq. on Automata, Languages and Programming (ICALP), pp. 417–431 (1981)

    Google Scholar 

  15. Korman, A.: General compact labeling schemes for dynamic trees. J. Distributed Computing 20(3), 179–193 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Korman, A.: Improved compact routing schemes for dynamic trees. In: Proc. 27th ACM Symp. on Principles of Distributed Computing (PODC), pp. 185–194 (2008)

    Google Scholar 

  17. Korman, A., Kutten, S.: Controller and estimator for dynamic networks. In: Proc. 26th ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing (PODC), pp. 175–184 (2007)

    Google Scholar 

  18. Korman, A., Peleg, D., Rodeh, Y.: Labeling schemes for dynamic tree networks. Theory Comput. Syst. 37(1), 49–75 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Korman, A., Peleg, D.: Labeling schemes for weighted dynamic trees. J. Information and Computation 205(12), 1721–1740 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lund, C., Reingold, N., Westbrook, J., Yan, D.C.K.: Competitive on-line algorithms for distributed data management. SIAM J. Comput. 28(3), 1086–1111 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kutten, S.: Optimal fault-tolerant distributed construction of a spanning forest. Inf. Process. Lett. 27(6), 299–307 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tsakalidis, A.K.: Maintaining order in a generalized linked list. Acta Inform. 21, 101–112 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Willard, D.: Maintaining dense sequential files in a dynamic environment. In: Proc. 14th ACM Symp. on Theory of Computing (STOC), pp. 114–121 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Emek, Y., Korman, A. (2009). New Bounds for the Controller Problem. In: Keidar, I. (eds) Distributed Computing. DISC 2009. Lecture Notes in Computer Science, vol 5805. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04355-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04355-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04354-3

  • Online ISBN: 978-3-642-04355-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics