Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimizing WebPage Interest

  • Conference paper
Advances in Information Retrieval Theory (ICTIR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5766))

Included in the following conference series:

  • 1029 Accesses

Abstract

In the rapidly evolving and growing environment of the internet, web site owners aim to maximize interest for their web site. In this article we propose a model, which combines the static structure of the internet with activity based data, to compute an interest based ranking. This ranking can be used to gain more insight into the flow of users over the internet, optimize the position of a web site and improve strategic decisions and investments. The model consists of a static centrality based component and a dynamic activity based component. The components are used to create a Markov Model in order to compute a ranking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Freeman, L.C.: Centrality in social networks - conceptual clarification. Social Networks 1(3), 215–239 (1979)

    Article  MathSciNet  Google Scholar 

  2. Bonacich, P.B.: Factoring and weighing approaches to status scores and clique identification. Journal of Mathematical Sociology (2), 113–120 (1972)

    Article  Google Scholar 

  3. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web (1999)

    Google Scholar 

  4. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment (1999)

    Google Scholar 

  5. Perkowitz, M., Etzioni, O.: Adaptive sites: Automatically learning from user access patterns. Technical report, Department of Computer Science and Engineering. University of Washington, Seattle (1997)

    Google Scholar 

  6. Garofalakis, J., Kappos, P., Mourloukos, D.: Web site optimization using page popularity. Technical report, University of Patras, Greece (1999)

    Google Scholar 

  7. Zhou, B., Chen, J., Shi, J., Zhang, H., Wu, Q.: Website link structure evaluation and improvement based on user visiting patterns. In: HYPERTEXT 2001: Proceedings of the twelfth ACM conference on Hypertext and Hypermedia, pp. 241–244. ACM Press, New York (2001)

    Chapter  Google Scholar 

  8. Sarukkai, R.R.: Link prediction and path analysis using markov chains. In: Proceedings of the 9th international World Wide Web conference on Computer networks: the international journal of computer and telecommunications networking, pp. 377–386. North-Holland Publishing Co., Amsterdam (2000)

    Google Scholar 

  9. Zhu, J., Hong, J., Hughes, J.G.: Using markov models for web site link prediction. Technical report, School of Information and Software Engineering. University of Ulster at Jordanstown (2002)

    Google Scholar 

  10. Zhu, J., Hong, J., Hughes, J.: Using markov chains for link prediction in adaptive web sites. In: Proc. of ACM SIGWEB Hypertext, pp. 60–73. Springer, Heidelberg (2002)

    Google Scholar 

  11. Eirinaki, M., Vazirgiannis, M., Kapogiannis, D.: Web path recommendations based on page ranking and markov models. In: WIDM 2005: Proceedings of the 7th annual ACM international workshop on Web information and data management, pp. 2–9. ACM Press, New York (2005)

    Google Scholar 

  12. Everett, M., Borgatti, S.P.: Ego network betweenness. Social Networks 27(1), 31–38 (2005)

    Article  Google Scholar 

  13. Freeman, L.C.: Centered graphs and the structure of ego networks. Mathematical Social Sciences 3(3), 291–304 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elbers, W., van der Weide, T. (2009). Optimizing WebPage Interest. In: Azzopardi, L., et al. Advances in Information Retrieval Theory. ICTIR 2009. Lecture Notes in Computer Science, vol 5766. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04417-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04417-5_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04416-8

  • Online ISBN: 978-3-642-04417-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics