Abstract
We develop a novel probabilistic approach to ad hoc retrieval that explicitly addresses the uncertainty about the information need underlying a given query. In doing so, we account for the special role of the corpus in the retrieval process. The derived retrieval method integrates multiple relevance models by using estimates of their faithfulness to the presumed information need. Empirical evaluation demonstrates the performance merits of the proposed approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lavrenko, V., Croft, W.B.: Relevance-based language models. In: Proceedings of SIGIR, pp. 120–127 (2001)
Lavrenko, V.: A Generative Theory of Relevance, PhD thesis. University of Massachusetts Amherst (2004)
Zhai, C., Lafferty, J.D.: A study of smoothing methods for language models applied to ad hoc information retrieval. In: Proceedings of SIGIR, pp. 334–342 (2001)
Li, X., Croft, W.B.: Improving the robustness of relevance-based language models. Technical Report IR-401, Center for Intelligent Information Retrieval. University of Massachusetts (2005)
Cronen-Townsend, S., Zhou, Y., Croft, W.B.: Precision prediction based on ranked list coherence. Information Retrieval 9(6), 723–755 (2006)
Lavrenko, V., Choquette, M., Croft, W.B.: Cross-lingual relevance models. In: Proceedings of SIGIR, pp. 175–182 (2002)
Liu, X., Croft, W.B.: Passage retrieval based on language models. In: Proceedings of CIKM, pp. 375–382 (2002)
Liu, X., Croft, W.B.: Cluster-based retrieval using language models. In: Proceedings of SIGIR, pp. 186–193 (2004)
Abdul-Jaleel, N., Allan, J., Croft, W.B., Diaz, F., Larkey, L., Li, X., Smucker, M.D., Wade, C.: UMASS at TREC 2004 — novelty and hard. In: Proceedings of TREC-13, pp. 715–725 (2004)
Zhai, C., Lafferty, J.D.: Model-based feedback in the language modeling approach to information retrieval. In: Proceedings of CIKM, pp. 403–410 (2001)
Mitra, M., Singhal, A., Buckley, C.: Improving automatic query expansion. In: Proceedings of SIGIR, pp. 206–214 (1998)
Collins-Thompson, K., Callan, J.: Estimation and use of uncertainty in pseudo-relevance feedback. In: Proceedings of SIGIR, pp. 303–310 (2007)
Lee, K.S., Croft, W.B., Allan, J.: A cluster-based resampling method for pseudo-relevance feedback. In: Proceedings of SIGIR, pp. 235–242 (2008)
Lavrenko, V., Croft, W.B.: Relevance models in information retrieval. In: [22], pp. 11–56.
Liu, X., Croft, W.B.: Evaluating text representations for retrieval of the best group of documents. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 454–462. Springer, Heidelberg (2008)
Lafferty, J.D., Zhai, C.: Document language models, query models, and risk minimization for information retrieval. In: Proceedings of SIGIR, pp. 111–119 (2001)
Winaver, M., Kurland, O., Domshlak, C.: Towards robust query expansion: Model selection in the language model framework to retrieval. In: Proceedings of SIGIR, pp. 729–730 (2007)
Saracevic, T., Kantor, P.: A study of information seeking and retrieving. iii. searchers, searches, and overlap. Journal of the American Society for Information Science 39(3), 197–216 (1988)
Belkin, N.J., Cool, C., Croft, W.B., Callan, J.P.: The effect of multiple query representations on information retrieval system performance. In: Proceedings of SIGIR, pp. 339–346 (1993)
Lee, J.H.: Analyses of multiple evidence combination. In: Proceedings of SIGIR, pp. 267–276 (1997)
Song, F., Croft, W.B.: A general language model for information retrieval (poster abstract). In: Proceedings of SIGIR, pp. 279–280 (1999)
Croft, W.B., Lafferty, J. (eds.): Language Modeling for Information Retrieval. Information Retrieval Book Series, vol. 13. Kluwer, Dordrecht (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Soskin, N., Kurland, O., Domshlak, C. (2009). Navigating in the Dark: Modeling Uncertainty in Ad Hoc Retrieval Using Multiple Relevance Models. In: Azzopardi, L., et al. Advances in Information Retrieval Theory. ICTIR 2009. Lecture Notes in Computer Science, vol 5766. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04417-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-04417-5_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04416-8
Online ISBN: 978-3-642-04417-5
eBook Packages: Computer ScienceComputer Science (R0)