Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5706))

Included in the following conference series:

Abstract

We summarize the strong performance of ParaMor, an unsupervised morphology induction system, at Morpho Challenge 2008. When ParaMor’s morphological analyses, which specialize at identifying inflectional morphology, are added to the analyses from the general-purpose unsupervised morphology induction system, Morfessor, the combined system identifies the morphemes of all five Morpho Challenge languages at recall scores higher than those of any other system which competed in the Challenge. These strong recall scores lead to F1 values for morpheme identification as high as or higher than those of any competing system for all the competition languages but English.

Categories and Subject Descriptors: I.2 [Artificial Intelligence]: I.2.7 Natural Language Processing.

General Terms: Experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bernhard, D.: Simple Morpheme Labeling in Unsupervised Morpheme Analysis. In: Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D.W., Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 873–880. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Bernhard, D.: Apprentissage non supervisé de familles morphologiques par classifi-cation ascendante hiérarchique. In: Actes de la 14e conférence sur le Traitement Automati-que des Langues Naturelles, TALN (2007)

    Google Scholar 

  3. Brent, M.R., Murthy, S.K., Lundberg, A.: Discovering Morphemic Suffixes: A Case Study in MDL Induction. In: The Fifth International Workshop on Artificial Intelligence and Statistics (1995)

    Google Scholar 

  4. Comrie, B., Dryer, M.S., Gil, D., Haspelmath, M.: Introduction. In: Haspelmath, M., Dryer, M.S., Gil, D., Comrie, B. (eds.) The World Atlas of Language Structures. Oxford University Press, Oxford (2005)

    Google Scholar 

  5. Creutz, M.: Induction of the Morphology of Natural Language: Unsupervised Mor-pheme Segmentation with Application to Automatic Speech Recognition. Ph.D. Thesis. Computer and Information Science, Report D13. Helsinki: University of Technology, Es-poo, Finland (2006)

    Google Scholar 

  6. Goldsmith, J.: An Algorithm for the Unsupervised Learning of Morphology. Natural Language Engineering 12.4, 335–351 (2006)

    Google Scholar 

  7. Hammarström, H.: Unsupervised Learning of Morphology: Survey, Model, Algorithm and Experiments. Thesis for the Degree of Licentiate of Engineering. Chalmers, Göteborg University (2007)

    Google Scholar 

  8. Harris, Z.: From Phoneme to Morpheme. Language 31.2, 190–222 (1955)

    Article  Google Scholar 

  9. Harris, Z.: Papers in Structural and Transformational Linguists. D. Reidel, Dordrecht (1970)

    Book  MATH  Google Scholar 

  10. Kurimo, M., Turunen, V., Varjokallio, M.: Unsupervised Morpheme Analysis – Morpho Challenge (2008), http://www.cis.hut.fi/morphochallenge-2008/ (accessed on: August 11, 2008)

  11. Monson, C.: ParaMor: From Paradigm Structure to Natural Language Morphology Induction. Ph.D. Thesis. Language Technologies Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania (2009)

    Google Scholar 

  12. Schone, P., Jurafsky, D.: Knowledge-Free Induction of Inflectional Morphologies. In: North American Chapter of the Association for Computational Linguistics, NAACL (2001)

    Google Scholar 

  13. Sharma, U., Kalita, J., Das, R.: Unsupervised Learning of Morphology for Building Lexicon for a Highly Inflectional Language. In: The Sixth Workshop of the ACL Special Interest Group in Computational Phonology, SIGPHON (2002)

    Google Scholar 

  14. Snover, M.G.: An Unsupervised Knowledge Free Algorithm for the Learning of Morphology in Natural Languages. M.S. Thesis. Computer Science, Sever Institute of Technology, Washington University, Saint Louis, Missouri (2002)

    Google Scholar 

  15. Stump, G.T.: Inflection. In: Spencer, A., Zwicky, A.M. (eds.) The Handbook of Morphology, Blackwell Publishers Inc., Malden (2001)

    Google Scholar 

  16. Wicentowski, R.: Modeling and Learning Multilingual Inflectional Morphology in a Minimally Supervised Framework. Ph.D. Thesis. Johns Hopkins University, Baltimore, Maryland (2002)

    Google Scholar 

  17. Zeman, D.: Using Unsupervised Paradigm Acquisition for Prefixes. In: Working Notes for the CLEF 2008 Workshop (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Monson, C., Carbonell, J., Lavie, A., Levin, L. (2009). ParaMor and Morpho Challenge 2008. In: Peters, C., et al. Evaluating Systems for Multilingual and Multimodal Information Access. CLEF 2008. Lecture Notes in Computer Science, vol 5706. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04447-2_128

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04447-2_128

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04446-5

  • Online ISBN: 978-3-642-04447-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics