Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards an Industrial Use of FLUCTUAT on Safety-Critical Avionics Software

  • Conference paper
Formal Methods for Industrial Critical Systems (FMICS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5825))

Abstract

Most modern safety-critical control programs, such as those embedded in fly-by-wire control systems, perform a lot of floating-point computations. The well-known pitfalls of IEEE 754 arithmetic make stability and accuracy analyses a requirement for this type of software. This need is traditionally addressed through a combination of testing and sophisticated intellectual analyses, but such a process is both costly and error-prone. FLUCTUAT is a static analyzer developed by CEA-LIST for studying the propagation of rounding errors in C programs. After a long time research collaboration with CEA-LIST on this tool, Airbus is now willing to use FLUCTUAT industrially, in order to automate part of the accuracy analyses of some control programs. In this paper, we present the IEEE 754 standard, the FLUCTUAT tool, the types of codes to be analyzed and the analysis methodology, together with code examples and analysis results.

This work is supported by FP7 European project INTERESTED, ITEA 2 European project ES_PASS, a grant from the DIGITEO foundation, and the french DPAC (Direction des Programmes AĂ©ronautiques Civils).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baudin, P., Delmas, D., Duprat, S., Monate, B.: Proving temporal properties at code level for basic operators of control/command programs. In: Proceedings of ERTS 2008, SIA (2008)

    Google Scholar 

  2. Bouissou, O., Goubault, E., Putot, S., Tekkal, K., Vedrine, F.: Hybridfluctuat: a static analyzer of numerical programs within a continuous environment. In: Computed Aided Verification conference, CAV 2009, Grenoble, France. LNCS, vol. 5643, pp. 620–626. Springer, Heidelberg (2009)

    Google Scholar 

  3. Comba, J.L.D., Stolfi, J.: Affine arithmetic and its applications to computer graphics. In: Anais do VI SimpĂ³sio Brasileiro de ComputaĂ§Ă£o GrĂ¡fica e Processamento de Imagens (SIBGRAPI 1993), October 1993, pp. 9–18 (1993)

    Google Scholar 

  4. Conquet, E., Cousot, P., Cousot, R., Goubault, E., Ghorbal, K., Lesens, D., Putot, S., Turin, M.: Space software validation using abstract interpretation. In: Proceedings of DASIA (2009)

    Google Scholar 

  5. Cousot, P.: Abstract interpretation based formal methods and future challenges. Informatics, 138–156 (2001)

    Google Scholar 

  6. Cousot, P., Cousot, R.: Basic concepts of abstract interpretation. In: IFIP Congress Topical Sessions, pp. 359–366 (2004)

    Google Scholar 

  7. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The astrée analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 21–30. Springer, Heidelberg (2005)

    Google Scholar 

  8. Delmas, D., Souyris, J.: Astrée: From research to industry. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 437–451. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Dormoy, F.-X.: Scade 6 a model based solution for safety critical software development. In: Embedded Real-Time Systems Conference (2008)

    Google Scholar 

  10. Feret, J.: Static analysis of digital filters. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 33–48. Springer, Heidelberg (2004)

    Google Scholar 

  11. Ghorbal, K., Goubault, E., Putot, S.: The zonotope abstract domain taylor1+. In: Computed Aided Verification conference, CAV 2009, Grenoble, France. LNCS, vol. 5643, pp. 627–633. Springer, Heidelberg (2009)

    Google Scholar 

  12. Goubault, E., Putot, S.: Static analysis of numerical algorithms. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 18–34. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Goubault, E., Putot, S.: Under-approximations of computations in real numbers based on generalized affine arithmetic. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 137–152. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Goubault, E., Putot, S.: Perturbed affine arithmetic for invariant computation in numerical program analysis. CoRR, abs/0807.2961 (2008)

    Google Scholar 

  15. Goubault, E., Putot, S., Baufreton, P., Gassino, J.: Static analysis of the accuracy in control systems: Principles and experiments. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp. 3–20. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Hunt, Lipsman, Rosenberg, Coombes, Osborn, Stuck: A Guide to MATLAB, 2e: for Beginners and Experienced Users. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  17. IEEE 754 standard for floating-point arithmetic. Floating-Point Working Group of the Microprocessor Standards Subcommittee of the Standards Committee of the IEEE Computer Society. Work in Progress (2004)

    Google Scholar 

  18. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler with a proof assistant. In: 33rd ACM symposium on Principles of Programming Languages, pp. 42–54. ACM Press, New York (2006)

    Google Scholar 

  19. Martel, M.: Validation of assembler programs for dsps: a static analyzer. In: PASTE 2004: Proceedings of the 5th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and engineering, pp. 8–13. ACM, New York (2004)

    Chapter  Google Scholar 

  20. Monniaux, D.: The pitfalls of verifying floating-point computations. ACM Trans. Program. Lang. Syst. 30(3), 1–41 (2008)

    Article  Google Scholar 

  21. Rival, X.: Symbolic transfer functions-based approaches to certified compilation. In: Leroy, X. (ed.) 31st Symposium on Principles of Programming Languages, pp. 1–13. ACM, New York (2004)

    Chapter  Google Scholar 

  22. Souyris, J., Delmas, D.: Experimental assessment of astrée on safety-critical avionics software. In: Saglietti, F., Oster, N. (eds.) SAFECOMP 2007. LNCS, vol. 4680, pp. 479–490. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Souyris, J., Le Pavec, E., Himbert, G., Borios, G., JĂ©gu, V., Heckmann, R.: Computing the worst case execution time of an avionics program by abstract interpretation. In: 5th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis, Dagstuhl, Germany (2007)

    Google Scholar 

  24. Thesing, S., Souyris, J., Heckmann, R., Randimbivololona, F., Langenbach, M., Wilhelm, R., Ferdinand, C.: An abstract interpretation-based timing validation of hard real-time avionics software. In: DSN (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., VĂ©drine, F. (2009). Towards an Industrial Use of FLUCTUAT on Safety-Critical Avionics Software. In: Alpuente, M., Cook, B., Joubert, C. (eds) Formal Methods for Industrial Critical Systems. FMICS 2009. Lecture Notes in Computer Science, vol 5825. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04570-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04570-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04569-1

  • Online ISBN: 978-3-642-04570-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics