Abstract
This paper proposes an automatic 3D face modeling and localizing technique, based on active stereovision. In the offline stage, the optical and geometrical parameters of the stereosensor are estimated. In the online acquisition stage, alternate complementary patterns are successively projected. The captured right and left images are separately analyzed in order to localize left and right primitives with sub-pixel precision. This analysis also provides us with an efficient segmentation of the informative facial region. Epipolar geometry transforms a stereo matching problem into a one-dimensional search problem. Indeed, we employ an adapted, optimized dynamic programming algorithm to pairs of primitives which are already located in each epiline. 3D geometry is retrieved by computing the intersection of optical rays coming from the pair of matched features. A pipeline of geometric modeling techniques is applied to densify the obtained 3D point cloud, and to mesh and texturize the 3D final face model. An appropriate evaluation strategy is proposed and experimental results are provided.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kolev, K., Cremers, D.: Integration of Multiview Stereo and Silhouettes Via Convex Functionals on Convex Domains. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 752–765. Springer, Heidelberg (2008)
Liu, Z., Zhang, Z., Jacobs, C., Cohen, M.: Rapid Modeling of Animated Faces From Video. Journal of Visualization and Computer Animation 12, 227–240 (2001)
D’Apuzzo, N.: Modeling human faces with multi-image photogrammetry. In: Proceedings of SPIE, San Jose, California (2002)
Ben Amor, B., Ardabilian, M., Chen, L.: Efficient and low-cost 2.5D and 3D face photography for recognition. In: IEEE International Conference on Signal-Image Technology and Internet-based Systems, Yaounde, Cameroun (2005)
Blais, F.: Review of 20 years of range sensor development. Journal of Electronic Imaging 13, 231–240 (2004)
Ben Amor, B., Ardabilian, M., Chen, L.: An Improved 3D Human Face Reconstruction Approach Based on Cubic Splines Models. In: IEEE Int. Symposium on 3D Data Processing Visualization and Transmission, North Carolina (2006)
Garcia, E., Dugelay, J.L., Delingette, H.: Low Cost 3D Face Acquisition and Modeling. In: ITCC, Las Vegas (2001)
Zhang, L., Curless, B., Seitz, S.M.: Rapid shape acquisition using color structured light and multipass dynamic programming. In: IEEE Int. Symposium on 3D Data Processing Visualization and Transmission, Padova (2002)
Narasimhan, S.G., Koppal, S.J., Yamazaki, S.: Temporal Dithering of Illumination for Fast Active Vision. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 830–844. Springer, Heidelberg (2008)
Ohta, Y., Kanade, T.: Stereo intra- and interscanline search using dynamic programming. IEEE Trans. PAMI. 7, 139–154 (1985)
Ouji, K., Ben Amor, B., Ardabilian, M., Chen, L., Ghorbel, F.: 3D Face Recognition using R-ICP and Geodesic Coupled Approach. In: IEEE International MultiMedia Modeling, Sophia-Antipolis (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ouji, K., Ardabilian, M., Chen, L., Ghorbel, F. (2009). Pattern Analysis for an Automatic and Low-Cost 3D Face Acquisition Technique. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2009. Lecture Notes in Computer Science, vol 5807. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04697-1_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-04697-1_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04696-4
Online ISBN: 978-3-642-04697-1
eBook Packages: Computer ScienceComputer Science (R0)