Abstract
Building an efficient and robust system capable of working in harsh real world conditions represents the ultimate goal of the traffic video surveillance. Despite an evident progress made in the area of statistical background modeling over the last decade or so, moving object detection is still one of the toughest problems in video surveillance, and new approaches are still emerging. Based on our published method for motion detection in the wavelet domain, we propose a novel, wavelet-based method for robust feature extraction and tracking. Hereby, a more efficient approach is proposed that relies on a non-decimated wavelet transformation to achieve both motion segmentation and selection of features for tracking. The use of wavelet transformation for selection of robust features for tracking stems from the persistence of actual edges and corners across the scales of the wavelet transformation. Moreover, the output of the motion detector is used to limit the search space of the feature tracker to those areas where moving objects are found. The results demonstrate a stable and efficient performance of the proposed approach in the domain of traffic video surveillance.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Piccardi, M.: Background subtraction techniques: a review. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3099–3104 (2004)
Wren, C., Azabayejani, A., Pentland, T.D., Pfinder, A.: Real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 780–785 (1997)
Stauffer, C., Grimson, W.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Analysis and Machine Intelligence 22, 747–757 (2000)
ElGammal, A., Duraiswami, R., Harwood, D., Davis, L.: Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proc. of the IEEE 90(7), 1151–1163 (2002)
Sheikh, Y., Shah, M.: Bayesian modeling of dynamic scenes for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 27(11), 1778–1792 (2005)
Antic, B., Crnojevic, V.S.: Joint domain-range modeling of dynamic scenes with adaptive kernel bandwidth. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2007. LNCS, vol. 4678, pp. 777–788. Springer, Heidelberg (2007)
Li, L., Huang, W., Gu, I., Tian, Q.: Statistical modeling of complex backgrounds for foreground object detection. IEEE Trans. Image Processing 13, 1459–1472 (2004)
Mittal, A., Paragios, N.: Motion-based background subtraction using adaptive kernel density estimation, pp. 302–309 (2004)
Crivelli, T., Piriou, G., Bouthemy, P., Cernuschi-Frías, B., Yao, J.F.: Simultaneous motion detection and background reconstruction with a mixed-state conditional markov random field. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 113–126. Springer, Heidelberg (2008)
Collins, R., Lipton, A., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O.: A system for video surveillance and monitoring (2000)
Kameda, Y., Minoh, M.: A human motion estimation method using 3-successive video frames. In: ICVSM, pp. 135–140 (1996)
Crnojevic, V., Antic, B., Culibrk, D.: Optimal wavelet differencing method for robust motion detection. In: IEEE International Conference on Image Processing (2009)
Barron, J., Fleet, D.J., Beauchemin, S.: Performance of optical flow techniques (1992)
Horn, B.K.P., Schunck, B.G.: Determining optical flow, pp. 389–407 (1992)
Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision (darpa). In: Proceedings of the 1981 DARPA Image Understanding Workshop, April 1981, pp. 121–130 (1981)
Black, M.J., Anandan, P.: The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields. Computer Vision and Image Understanding 63(1), 75–104 (1996)
Szeliski, R., Coughlan, J.: Spline-based image registration. Int. J. Comput. Vision 22(3), 199–218 (1997)
Moravec, H.: Obstacle avoidance and navigation in the real world by a seeing robot rover
Thorpe, C.E.: Fido: vision and navigation for a robot rover. PhD thesis, Pittsburgh, PA, USA (1984)
Marr, D., Ullman, S., Poggio, T.: Bandpass channels, zero-crossings, and early visual information processing. J. Opt. Soc. Am. 69(6), 914–916 (1979)
Kitchen, L., Rosenfeld, A.: Gray-level corner detection. Pattern Recognition Letters 1(2), 95–102 (1982)
Dreschler, L., Nagel, H.H.: Volumetric model and 3d-trajectory of a moving car derived from monocular tv-frame sequences of a street scene. In: Proc. of the 7th IJCAI, Vancouver, Canada, pp. 692–697 (1981)
Shi, J., Tomasi, C.: Good features to track. In: 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Proceedings CVPR 1994, pp. 593–600 (1994)
Katona, M., Pizurica, A., Teslic, N., Kovacevic, V., Philips, W.: Fpga design and implementation of a wavelet-domain video denoising system. In: Blanc-Talon, J., Philips, W., Popescu, D.C., Scheunders, P. (eds.) ACIVS 2005. LNCS, vol. 3708, pp. 650–657. Springer, Heidelberg (2005)
Pizurica, A., Philips, W.: Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising. IEEE Transactions on Image Processing 15(3), 654–665 (2006)
Shimojo, S., Silverman, G.H., Nakayama, K.: Occlusion and the solution to the aperture problem for motion. Vision research 29(5), 619–626 (1989)
Bouguet, J.Y.: Pyramidal implementation of the lucas kanade feature tracker: Description of the algorithm (2002)
Zhang, L., Bao, P.: Edge detection by scale multiplication in wavelet domain. Pattern Recogn. Lett. 23(14), 1771–1784 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Antić, B., Niño Castaneda, J.O., Ćulibrk, D., Pižurica, A., Crnojević, V., Philips, W. (2009). Robust Detection and Tracking of Moving Objects in Traffic Video Surveillance. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2009. Lecture Notes in Computer Science, vol 5807. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04697-1_46
Download citation
DOI: https://doi.org/10.1007/978-3-642-04697-1_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04696-4
Online ISBN: 978-3-642-04697-1
eBook Packages: Computer ScienceComputer Science (R0)