Abstract
This paper introduces a hybrid algorithm called as the HENSA-SAT for the large-scale Satisfiability (SAT) problems. The HENSA-SAT is the hybrid of Evolutionary Negative Selection Algorithm (ENSA), the Flip Heuristic, the BackForwardFlipHeuristic procedure and the VerticalClimbing procedure. The Negative Selection (NS) is called twice for different purposes. One is used to make the search start in as many different areas as possible. The other is used to restrict the times of calling the BackForwardFlipHeuristic for local search. The Flip Heuristic, the BackForwardFlipHeuristic procedure and the VerticalClimbing procedure are used to enhance the local search. Experiment results show that the proposed algorithm is competitive with the GASAT that is the state-of-the-art algorithm for the large-scale SAT problems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cook, S.A.: The Complexity of Theorem-proving Procedure. In: Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, New York, pp. 151–158 (1971)
Gent, I.P., Toby, W.: The Search for Satisfaction. Department of Computer Science. University of Strathclyde (1999)
Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. Journal of the ACM 7, 201–215 (1960)
Martin, D., George, L., Donald, L.: A Machine Program for Theorem-proving. Communication of ACM 5(7), 394–397 (1962)
Papadimitriou, C.H.: On Selecting a Satisfying Truth Assignment. In: The 32nd Annual Symposium of Foundations of Computer Science, pp. 163–169 (1991)
Selman, B., Levesque, H., Mitchell, D.: A New Method for Solving Hard Satisfiability Problems. In: Proceedings of the 10th National Conference on Artificial Intelligence, San Jose, CA, pp. 440–446 (1992)
Selman, B., Kautz, H.A., Cohen, B.: Noise Strategies for Improving Local Search. In: Proceedings of the 12th National Conference on Artificial Intelligence, Seattle, WA, pp. 337–343 (1994)
McAllester, D., Selman, B., Kautz, H.: Evidence for Invariants in Local Search. In: Proceedings of the 14th National Conference on Artificial Intelligence, pp. 321–327 (1997)
Hirsch, E.A., Kojevnikov, A.: UnitWalk: A New SAT Solver that Uses Local Search Guided by Unit Clause Elimination. Annals of Mathematics and Artificial Intelligence 43(1-4), 91–111 (2001)
Zhang, Y., Luo, W., Wang, X.: A Logic Circuits Designing Algorithm Based on Immune Principles. Computer Engineering and Applications 42(11), 38–40 (2006) (in Chinese)
Luo, W., Zhang, Y., Wang, X., Wang, X.: Experimental Analyses of Evolutionary Negative Selection Algorithm for Function Optimization. Journal of Harbin Engineering University 27(B07), 158–163 (2006)
Zhang, Y., Luo, W., Zhang, Z., Li, B., Wang, X.: A Hardware/Software Partitioning Algorithm Based on Artificial Immune Principles. Applied Soft Computing 8(1), 383–391 (2008)
Marchiori, E., Rossi, C.: A Flipping Genetic Algorithm for Hard 3-SAT Problems. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 393–400. Morgan Kaufmann, San Francisco (1999)
Jong, K.A.D., Spears, W.M.: Using Genetic Algorithms to Solve NP-complete Problems. In: Proceedings of the 3rd International Conference on Genetic Algorithms, Mason University, United States, pp. 124–132. Morgan Kaufmann Publishers Inc., San Francisco (1989)
Fleurent, C., Ferland, J.: Object-oriented Implementation of Heuristic Search Methods for Graph Coloring, Maximum Clique, and Satisfiability. In: Trick, M., Johnson, D.S. (eds.) DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26, pp. 619–652 (1996)
Thomas, B., Eiben, A.E., Marco, E.V.: A Superior Evolutionary Algorithm for 3-SAT. In: Proceedings of the 7th International Conference on Evolutionary Programming VII. Springer, Heidelberg (1998)
Gottlieb, J., Voss, N.: Improving the Performance of Evolutionary Algorithms for the Satisfiability Problem by Refining Functions. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 755–764. Springer, Heidelberg (1998)
Gottlieb, J., Voss, N.: Adaptive Fitness Functions for the Satisfiability Problem. In: Proceedings of the 6th International Conference on Parallel Problem Solving from Nature. Springer, Heidelberg (2000)
Rossi, C., Marchiori, E., Kok, J.N.: An Adaptive Evolutionary Algorithm for the Satisfiability Problem. In: Proceedings of the 2000, ACM symposium on Applied computing, Como, Italy, vol. 1, pp. 463–469. ACM, New York (2000)
Lardeux, F., Saubion, F., Hao, J.-K.: GASAT: A Genetic Local Search Algorithm for the Satisfiability Problem. Evolutionary Computation 14(2), 223–253 (2006)
Gottlieb, J., Marchiori, E., Rossi, C.: Evolutionary Algorithms for the Satisfiability Problem. Evolutionary Computation 10(1), 35–50 (2002)
Luo, W., Wang, J., Wang, X.: Evolutionary Negative Selection Algorithms for Anomaly Detection. In: Proceedings of the 8th Joint Conference on Information Sciences (ICIS 2005), Salt Lake City, Utah, vol. 1-3, pp. 440–445 (2005)
Zhang, Z., Luo, W., Wang, X.: Research of Mobile Robots Path Planning Algorithm Based on Immune Evolutionary Negative Selection Mechanism. Journal of Electronics and Information Technology 29(8), 1987–1991 (2007)
Cao, X., Zhang, S., Wang, X.: Immune Optimization System based on Immune Recognition. In: Proceedings of the 8th International Conference on Neural Information Processing, Shanghai, China, vol. 2, pp. 535–541 (2001)
Luo, W., Guo, P., Wang, X.: On Convergence of Evolutionary Negative Selection Algorithms for Anomaly Detection. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, Hongkong, pp. 2938–2944 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guo, P., Luo, W., Li, Z., Liang, H., Wang, X. (2009). Hybridizing Evolutionary Negative Selection Algorithm and Local Search for Large-Scale Satisfiability Problems. In: Cai, Z., Li, Z., Kang, Z., Liu, Y. (eds) Advances in Computation and Intelligence. ISICA 2009. Lecture Notes in Computer Science, vol 5821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04843-2_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-04843-2_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04842-5
Online ISBN: 978-3-642-04843-2
eBook Packages: Computer ScienceComputer Science (R0)