Abstract
Statistical Relational Learning (SRL) is a growing field in Machine Learning that aims at the integration of logic-based learning approaches with probabilistic graphical models. Markov Logic Networks (MLNs) are one of the state-of-the-art SRL models that combine first-order logic and Markov networks (MNs) by attaching weights to first-order formulas and viewing these as templates for features of MNs. Learning models in SRL consists in learning the structure (logical clauses in MLNs) and the parameters (weights for each clause in MLNs). Structure learning of MLNs is performed by maximizing a likelihood function (or a function thereof) over relational databases and MLNs have been successfully applied to problems in relational and uncertain domains. However, most complex domains are characterized by incomplete data. Until now SRL models have mostly used Expectation-Maximization (EM) for learning statistical parameters under missing values. Multistrategic learning in the relational setting has been a successful approach to dealing with complex problems where multiple inference mechanisms can help solve different subproblems. Abduction is an inference strategy that has been proven useful for completing missing values in observations. In this paper we propose two frameworks for integrating abduction in SRL models. The first tightly integrates logical abduction with structure and parameter learning of MLNs in a single step. During structure search guided by conditional likelihood, clause evaluation is performed by first trying to logically abduce missing values in the data and then by learning optimal pseudo-likelihood parameters using the completed data. The second approach integrates abduction with Structural EM of [17] by performing logical abductive inference in the E-step and then by trying to maximize parameters in the M-step.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arvanitis, A., Muggleton, S.H., Chen, J., Watanabe, H.: Abduction with stochastic logic programs based on a possible worlds semantics. Short Paper Proceedings of the 16th International Conference on Inductive Logic Programming, University of Corunna (2006)
Bacchus, F.: Representing and Reasoning with Probabilistic Knowledge. MIT Press, Cambridge (1990)
Besag, J.: Statistical analysis of non-lattice data. Statistician 24, 179–195 (1975)
Biba, M., Ferilli, S., Esposito, F.: Discriminative structure learning of markov logic networks. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 59–76. Springer, Heidelberg (2008)
Biba, M., Ferilli, S., Esposito, F.: Structure learning of markov logic networks through iterated local search. In: Proceedings of 18th European Conference on Artificial Intelligence (ECAI). Frontiers in Artificial Intelligence and Applications, vol. 178, pp. 361–365 (2008)
Chen, J., Muggleton, S., Santos, J.: Abductive stochastic logic programs for metabolic network inhibition learning. In: Proceedings of Workshop Mining and Learning with Graphs, MLG 2007 (2007)
Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and databases, pp. 293–322. Plenum Press, New York (1978)
Cumby, C., Roth, D.: Feature extraction languages for propositionalized relational learning. In: Proceedings of the IJCAI 2003 Workshop on Learning Statistical Models from Relational Data, Acapulco, Mexico, IJCAII, pp. 24–31 (2003)
Cussens, J.: Parameter estimation in stochastic logic programs. Machine Learning 44(3), 245–271 (2001)
De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning 26, 99–146 (1997)
De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.): Probabilistic Inductive Logic Programming - Theory and Applications. Springer, Heidelberg (2008)
Della Pietra, S., Della Pietra, V., Laferty, J.: Inducing features of random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 380–392 (1997)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, Series B 39, 1–38 (1977)
Eshghi, K., Kowalski, R.: Abduction compared to negation by failure. In: Levi, G., Martelli, M. (eds.) Proceedings of the 6th international conference on logic programming, pp. 234–255. The MIT Press, Cambridge (1989)
Esposito, F., Lamma, E., Malerba, P., Mello, D., Milano, M., Riguzzi, F., Semeraro, G.: Learning abductive logic programs. In: Proceedings of the ECAI 1996 workshop on abductive and inductive reasoning, Budapest, pp. 23–30 (1996)
Esposito, F., Semeraro, G., Fanizzi, N., Ferilli, S.: Multistrategy theory revision: induction and abduction in inthelex. Machine Learning 38(1-2), 133–156 (2000)
Friedman, N.: Learning belief networks in the presence of missing values and hidden variables. In: Fourteenth Inter. Conf. on Machine Learning, ICML 1997 (1997)
Furnkranz, J.: Separate-and-conquer rule learning. Artificial Intelligence Review 13(1), 3–54 (1999)
Genesereth, M.R., Nilsson, N.J.: Logical foundations of artificial intelligence. Morgan Kaufmann, San Mateo (1987)
Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT, Cambridge (2007)
Geyer, C.J., Thompson, E.A.: Constrained monte carlo maximum likelihood for dependent data. Journal of the Royal Statistical Society, Series B 54, 657–699 (1992)
Halpern, J.: An analysis of first-order logics of probability. Artificial Intelligence 46, 311–350 (1990)
Hoos, H.H., Stutzle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, San Francisco (2005)
Huynh, T.N., Mooney, R.J.: Discriminative structure and parameter learning for markov logic networks. In: Proc. of the 25th International Conference on Machine Learning, ICML (2008)
Kakas, A., Mancarella, P.: On the relation of truth maintenance and abduction. In: Proc. 1st Pacific Rim International Conference on Artificial Intelligence (1990)
Kakas, A., Riguzzi, F.: Learning with abduction. New Generation Computing 18(3), 243–294 (2000)
Kakas, M., Kowalski, R., Toni, F.: Abductive logic programming. J. Logic. Comput., 718–770 (1993)
Kersting, K., De Raedt, L.: Towards combining inductive logic programming with bayesian networks. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 118–131. Springer, Heidelberg (2001)
Kok, S., Domingos, P.: Learning the structure of markov logic networks. In: Proc. 22nd Int’l Conf. on Machine Learning, pp. 441–448 (2005)
Koller, D., Levy, A., Pfeffer, A.: P-classic: A tractable probabilistic description logic. In: Proc. of NCAI 1997, pp. 360–397 (1997)
Lamma, E., Mello, P., Milano, M., Riguzzi, F., Esposito, F., Ferilli, S., Semeraro, G.: Cooperation of abduction and induction in logic programming. In: Abductive and inductive reasoning: essays on their relation and integration. Kluwer, Dordrecht (2000)
Landwehr, N., Kersting, K., De Raedt, L.: Integrating naive bayes and foil. Journal of Machine Learning Research, 481–507 (2007)
Lavrac, N., Dzeroski, S.: Inductive Logic Programming: Techniques and applications. UK, Ellis Horwood, Chichester (1994)
Liu, D.C., Nocedal, J.: On the limited memory bfgs method for large scale optimization. Mathematical Programming 45, 503–528 (1989)
Loureno, H.R., Martin, O., Stutzle, T.: Iterated local search. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 321–353. Kluwer Academic Publishers, Norwell (2002)
Lowd, D., Domingos, P.: Efficient weight learning for markov logic networks. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 200–211. Springer, Heidelberg (2007)
McCallum, A.: Efficiently inducing features of conditional random fields. In: Proc. UAI 2003, pp. 403–410 (2003)
Michalski, R.S.: Inferential theory of learning. developing foundations for multistrategy learning. In: Michalski, R.S., Tecuci, G. (eds.) Machine Learning. A Multistrategy Approach, vol. IV, pp. 3–61. Morgan Kaufmann, San Francisco
Mihalkova, L., Mooney, R.J.: Bottom-up learning of markov logic network structure. In: Proc. 24th Int’l Conf. on Machine Learning, pp. 625–632 (2007)
Mitchell, T.M.: Machine Learning. The McGraw-Hill Companies, Inc., New York (1997)
Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Advances in inductive logic programming. IOS Press, Amsterdam (1996)
Muggleton, S.H.: Inverse entailment and progol. New Generation Computing Journal, 245–286 (1995)
Koller, D., Friedman, N., Getoor, L., Pfeffer, A.: Learning probabilistic relational models. In: Proc. 16th Int’l Joint Conf. on AI (IJCAI), pp. 1300–1307. Morgan Kaufmann, San Francisco (1999)
Ngo, L., Haddawy, P.: Answering queries from context-sensitive probabilistic knowledge bases. Theoretical Computer Science 171, 147–177 (1997)
Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming. Springer, Heidelberg (1997)
Nilsson, N.: Probabilistic logic. Artificial Intelligence 28, 71–87 (1986)
Pasula, H., Russell, S.: Approximate inference for first-order probabilistic languages. In: Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, pp. 741–748. Morgan Kaufmann, Seattle (2001)
Pearl, J.: Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann, San Francisco (1988)
Plotkin, G.D.: A note on inductive generalization. Machine Intelligence 5, 153–163 (1970)
Poole, D.: A logical framework for default reasoning. Artif. Intell. 36, 27–47 (1988)
Poole, D.: Probabilistic horn abduction and bayesian networks. Artificial Intelligence 64, 81–129 (1993)
Poon, H., Domingos, P.: Sound and efficient inference with probabilistic and deterministic dependencies. In: Proc. 21st Nat’l Conf. on AI (AAAI), pp. 458–463. AAAI Press, Menlo Park (2006)
Poon, H., Domingos, P., Sumner, M.: A general method for reducing the complexity of relational inference and its application to mcmc. In: Proc. 23rd Nat’l Conf. on Artificial Intelligence. AAAI Press, Chicago (2008)
Popescul, A., Ungar, L.H.: Structural logistic regression for link analysis. In: Proceedings of the Second International Workshop on Multi-Relational Data Mining, pp. 92–106. ACM Press, Washington (2003)
Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5, 239–266 (1990)
De Raedt, L.: Logical settings for concept-learning. Artificial Intelligence 95(1), 197–201 (1997)
Reiter, R.: A logic for default reasoning. J. Artif. Intell. (13), 81–132 (1980)
Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107–236 (2006)
Santos Costa, V., Page, D., Qazi, M., Cussens, J.: Clp(bn): Constraint logic programming for probabilistic knowledge. In: Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence, pp. 517–524. Morgan Kaufmann, Acapulco (2003)
Sato, T., Kameya, Y.: Prism: A symbolic-statistical modeling language. In: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, pp. 1330–1335. Morgan Kaufmann, Nagoya (1997)
Sato, T., Kameya, Y.: A viterbi-like algorithm and em learning for statistical abduction. In: Proceedings of UAI 2000 Workshop on Fusion of Domain Knowledge with Data for Decision Support (2000)
Sha, F., Pereira, F.: Shallow parsing with conditional random fields. In: Proc. HLT-NAACL 2003, pp. 134–141 (2003)
Shapiro, E.: Algorithmic Program Debugging. MIT Press, Cambridge (1983)
Singla, P., Domingos, P.: Discriminative training of markov logic networks. In: Proc. 20th Nat’l Conf. on AI (AAAI), pp. 868–873. AAAI Press, Menlo Park (2005)
Singla, P., Domingos, P.: Markov logic in infinite domains. In: Proc. 23rd UAI, pp. 368–375. AUAI Press (2007)
Srinivasan, A.: The Aleph Manual, http://www.comlab.ox.ac.uk/oucl/~esearch/areas/machlearn/Aleph/
Taskar, B., Abbeel, P., Koller, D.: Discriminative probabilistic models for relational data. In: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, pp. 485–492. Morgan Kaufmann, Edmonton (2002)
Wellman, J.S., Breese, M., Goldman, R.P.: From knowledge bases to decision models. Knowledge Engineering Review 7 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Biba, M., Ferilli, S., Esposito, F. (2010). Towards Multistrategic Statistical Relational Learning. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T., Kacprzyk, J. (eds) Advances in Machine Learning II. Studies in Computational Intelligence, vol 263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05179-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-05179-1_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-05178-4
Online ISBN: 978-3-642-05179-1
eBook Packages: EngineeringEngineering (R0)