Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Analysis of Locust Swarms on Large Scale Global Optimization Problems

  • Conference paper
Artificial Life: Borrowing from Biology (ACAL 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5865))

Included in the following conference series:

Abstract

Locust Swarms are a recently-developed multi-optima particle swarm. To test the potential of the new technique, they have been applied to the 1000-dimension optimization problems used in the recent CEC2008 Large Scale Global Optimization competition. The results for Locust Swarms are competitive on these problems, and in particular, much better than other particle swarm-based techniques. An analysis of these results leads to a simple guideline for parameter selection in Locust Swarms that has a broad range of effective performance. Further analysis also demonstrates that “dimension reductions” during the search process are the single largest factor in the performance of Locust Swarms and potentially a key factor in the performance of other search techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beyer, H.-G., Schwefel, H.-P.: Evolution Strategies: A comprehensive introduction. Natural Computing 1, 3–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brest, J., Zamuda, A., Boskovic, B., Maucec, M.S., Zumer, V.: High-Dimensional Real-Parameter Optimization using Self-Adaptive Differential Evolution Algorithm with Population Size Reduction. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 2032–2039. IEEE Press, Los Alamitos (2008)

    Chapter  Google Scholar 

  3. Chen, S.: Locust Swarms – A New Multi-Optima Search Technique. In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation, pp. 1745–1752. IEEE Press, Los Alamitos (2009)

    Chapter  Google Scholar 

  4. Chen, S., Lupien, V.: Optimization in Fractal and Fractured Landscapes using Locust Swarms. In: Korb, K., Randall, M., Hendtlass, T. (eds.) ACAL 2009. LNCS (LNAI), vol. 5865, pp. 211–220. Springer, Heidelberg (2009)

    Google Scholar 

  5. Chen, S., Miura, K., Razzaqi, S.: Analyzing the Role of “Smart” Start Points in Coarse Search-Greedy Search. In: Randall, M., Abbass, H.A., Wiles, J. (eds.) ACAL 2007. LNCS (LNAI), vol. 4828, pp. 13–24. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Hendtlass, T.: WoSP: A Multi-Optima Particle Swarm Algorithm. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 727–734. IEEE Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  7. Hsieh, S.-T., Sun, T.-Y., Liu, C.-C., Tsai, S.-J.: Solving Large Scale Global Optimization Using Improved Particle Swarm Optimizer. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 1777–1784. IEEE Press, Los Alamitos (2008)

    Chapter  Google Scholar 

  8. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Press, Los Alamitos (1995)

    Chapter  Google Scholar 

  9. MacNich, C.: Towards Unbiased Benchmarking of Evolutionary and Hybrid Algorithms for Real-valued Optimisation. Connection Science 19(4), 361–385 (2007)

    Article  Google Scholar 

  10. MacNish, C., Yao, X.: Direction Matters in High-Dimensional Optimization. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 2372–2379. IEEE Press, Los Alamitos (2008)

    Chapter  Google Scholar 

  11. Norman, M.G., Moscato, P.: A Competitive and Cooperative Approach to Complex Combinatorial Search, Caltech Concurrent Computation Program, C3P Report 790 (1989)

    Google Scholar 

  12. Tang, K., Yao, X., Suganthan, P.N., MacNish, C., Chen, Y.P., Chen, C.M., Yang, Z.: Benchmark Functions for the CEC 2008 Special Session and Competition on Large Scale Global Optimization. Technical Report (2007), http://www.ntu.edu.sg/home/EPNSugan

  13. Tseng, L.-Y., Chen, C.: Multiple Trajectory Search for Large Scale Global Optimization. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 3052–3059. IEEE Press, Los Alamitos (2008)

    Chapter  Google Scholar 

  14. Wang, Y., Li, B.: A Restart Univariate Estimation of Distribution Algorithm: Sampling under Mixed Gaussian and Levy probability Distribution. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 3917–3924. IEEE Press, Los Alamitos (2008)

    Chapter  Google Scholar 

  15. Yang, Z., Tang, K., Yao, X.: Multilevel Cooperative Coevolution for Large Scale Optimization. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 1663–1670. IEEE Press, Los Alamitos (2008)

    Chapter  Google Scholar 

  16. Zamuda, A., Brest, J., Boskovic, B., Zumer, V.: Large Scale Global Optimization using Differential Evolution with Self-adaptation and Cooperative Co-evolution. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 3718–3725. IEEE Press, Los Alamitos (2008)

    Chapter  Google Scholar 

  17. Zhao, S.Z., Liang, J.J., Suganthan, P.N., Tasgetiren, M.F.: Dynamic Multi-Swarm Particle Swarm Optimizer with Local Search for Large Scale Global Optimization. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 3845–3852. IEEE Press, Los Alamitos (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, S. (2009). An Analysis of Locust Swarms on Large Scale Global Optimization Problems. In: Korb, K., Randall, M., Hendtlass, T. (eds) Artificial Life: Borrowing from Biology. ACAL 2009. Lecture Notes in Computer Science(), vol 5865. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10427-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10427-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10426-8

  • Online ISBN: 978-3-642-10427-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics