Abstract
Locust Swarms are a recently-developed multi-optima particle swarm. To test the potential of the new technique, they have been applied to the 1000-dimension optimization problems used in the recent CEC2008 Large Scale Global Optimization competition. The results for Locust Swarms are competitive on these problems, and in particular, much better than other particle swarm-based techniques. An analysis of these results leads to a simple guideline for parameter selection in Locust Swarms that has a broad range of effective performance. Further analysis also demonstrates that “dimension reductions” during the search process are the single largest factor in the performance of Locust Swarms and potentially a key factor in the performance of other search techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beyer, H.-G., Schwefel, H.-P.: Evolution Strategies: A comprehensive introduction. Natural Computing 1, 3–52 (2002)
Brest, J., Zamuda, A., Boskovic, B., Maucec, M.S., Zumer, V.: High-Dimensional Real-Parameter Optimization using Self-Adaptive Differential Evolution Algorithm with Population Size Reduction. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 2032–2039. IEEE Press, Los Alamitos (2008)
Chen, S.: Locust Swarms – A New Multi-Optima Search Technique. In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation, pp. 1745–1752. IEEE Press, Los Alamitos (2009)
Chen, S., Lupien, V.: Optimization in Fractal and Fractured Landscapes using Locust Swarms. In: Korb, K., Randall, M., Hendtlass, T. (eds.) ACAL 2009. LNCS (LNAI), vol. 5865, pp. 211–220. Springer, Heidelberg (2009)
Chen, S., Miura, K., Razzaqi, S.: Analyzing the Role of “Smart” Start Points in Coarse Search-Greedy Search. In: Randall, M., Abbass, H.A., Wiles, J. (eds.) ACAL 2007. LNCS (LNAI), vol. 4828, pp. 13–24. Springer, Heidelberg (2007)
Hendtlass, T.: WoSP: A Multi-Optima Particle Swarm Algorithm. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 727–734. IEEE Press, Los Alamitos (2005)
Hsieh, S.-T., Sun, T.-Y., Liu, C.-C., Tsai, S.-J.: Solving Large Scale Global Optimization Using Improved Particle Swarm Optimizer. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 1777–1784. IEEE Press, Los Alamitos (2008)
Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Press, Los Alamitos (1995)
MacNich, C.: Towards Unbiased Benchmarking of Evolutionary and Hybrid Algorithms for Real-valued Optimisation. Connection Science 19(4), 361–385 (2007)
MacNish, C., Yao, X.: Direction Matters in High-Dimensional Optimization. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 2372–2379. IEEE Press, Los Alamitos (2008)
Norman, M.G., Moscato, P.: A Competitive and Cooperative Approach to Complex Combinatorial Search, Caltech Concurrent Computation Program, C3P Report 790 (1989)
Tang, K., Yao, X., Suganthan, P.N., MacNish, C., Chen, Y.P., Chen, C.M., Yang, Z.: Benchmark Functions for the CEC 2008 Special Session and Competition on Large Scale Global Optimization. Technical Report (2007), http://www.ntu.edu.sg/home/EPNSugan
Tseng, L.-Y., Chen, C.: Multiple Trajectory Search for Large Scale Global Optimization. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 3052–3059. IEEE Press, Los Alamitos (2008)
Wang, Y., Li, B.: A Restart Univariate Estimation of Distribution Algorithm: Sampling under Mixed Gaussian and Levy probability Distribution. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 3917–3924. IEEE Press, Los Alamitos (2008)
Yang, Z., Tang, K., Yao, X.: Multilevel Cooperative Coevolution for Large Scale Optimization. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 1663–1670. IEEE Press, Los Alamitos (2008)
Zamuda, A., Brest, J., Boskovic, B., Zumer, V.: Large Scale Global Optimization using Differential Evolution with Self-adaptation and Cooperative Co-evolution. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 3718–3725. IEEE Press, Los Alamitos (2008)
Zhao, S.Z., Liang, J.J., Suganthan, P.N., Tasgetiren, M.F.: Dynamic Multi-Swarm Particle Swarm Optimizer with Local Search for Large Scale Global Optimization. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 3845–3852. IEEE Press, Los Alamitos (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, S. (2009). An Analysis of Locust Swarms on Large Scale Global Optimization Problems. In: Korb, K., Randall, M., Hendtlass, T. (eds) Artificial Life: Borrowing from Biology. ACAL 2009. Lecture Notes in Computer Science(), vol 5865. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10427-5_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-10427-5_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10426-8
Online ISBN: 978-3-642-10427-5
eBook Packages: Computer ScienceComputer Science (R0)