Abstract
We develop an algorithm for the super-resolution optical flow computation by combining variational super-resolution and the variational optical flow computation. Our method first computes the gradient and the spatial difference of a high resolution images from these of low resolution images directly, without computing any high resolution images. Second the algorithm computes optical flow of high resolution image using the results of the first step.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Youla, D.: Generalized image restoration by the method of alternating orthogonal projections. IEEE Transactions on Circuits and Systems 25, 694–702 (1978)
Stark, H. (ed.): Image Recovery: Theory and Application. Academic Press, New York (1992)
Amiz, T., Lubetzky, E., Kiryati, N.: Coarse to over-fine optical flow estimation. Pattern recognition 40, 2496–2503 (2007)
Ruhnau, P., Knhlberger, T., Schnoerr, C., Nobach, H.: Variatinal optical flow estimation for particle image velocimetry. Experiments in Fluids 38, 21–32 (2005)
Wahba, G., Wendelberger, J.: Some new mathematical methods for variational objective analysis using splines and cross-validation. Monthly Weather Review 108, 36–57 (1980)
Burt, P.J., Andelson, E.H.: The Laplacian pyramid as a compact image coding. IEEE Trans. Communications 31, 532–540 (1983)
Hwan, S., Hwang, S.-H., Lee, U.K.: A hierarchical optical flow estimation algorithm based on the interlevel motion smoothness constraint. Pattern Recognition 26, 939–952 (1993)
Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)
Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Computer Surveys 26, 433–467 (1995)
Suter, D.: Motion estimation and vector spline. In: Proceedings of CVPR 1994, pp. 939–942 (1994)
Amodei, L., Benbourhim, M.N.: A vector spline approximation. Journal of Approximation Theory 67, 51–79 (1991)
Benbourhim, M.N., Bouhamidi, A.: Approximation of vectors fields by thin plate splines with tension. Journal of Approximation Theory 136, 198–229 (2005)
Suter, D., Chen, F.: Left ventricular motion reconstruction based on elastic vector splines. IEEE Trans. Medical Imaging, 295–305 (2000)
Sorzano, C.Ó.S., Thévenaz, P., Unser, M.: Elastic registration of biological images using vector-spline regularization. IEEE Tr. Biomedical Engineering 52, 652–663 (2005)
Steidl, G., Didas, S., Neumann, J.: Splines in higher order TV regularization. IJCV 70, 241–255 (2006)
Grenander, U., Miller, M.: Computational anatomy: An emerging discipline. Quarterly of applied mathematics 4, 617–694 (1998)
Weickert, J., Schnörr, C.: Variational optic flow computation with a spatio-temporal smoothness constraint. Journal of Mathematical Imaging and Vision 14, 245–255 (2001)
Weickert, J., Bruhn, A., Papenberg, N., Brox, T.: Variational optic flow computation: From continuous models to algorithms. In: Proceedings of International Workshop on Computer Vision and Image Analysis, IWCVIA 2003 (2003)
Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. International Journal of Computer Vision 67, 141–158 (2006)
Werner, T., Pock, T., Cremers, D., Bischof, H.: An unbiased second-order prior for high-accuracy motion estimation. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 396–405. Springer, Heidelberg (2008)
Rodŕguez, P., Wohlberg, B.: Efficient minimization method for a generalized total variation functional. IEEE Trans. Image Processing 18, 322–332 (2009)
Schmidt, M., Fung, G., Rosales, R.: Fast optimization methods for L1 regularization: A comparative study and two new approaches. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 286–297. Springer, Heidelberg (2007)
Pock, T., Urschler, M., Zach, C., Beichel, R.R., Bischof, H.: A duality based algorithm for TV-L 1-optical-flow image registration. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 511–518. Springer, Heidelberg (2007)
Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L 1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mochizuki, Y., Kameda, Y., Imiya, A., Sakai, T., Imaizumi, T. (2009). Two Step Variational Method for Subpixel Optical Flow Computation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10520-3_106
Download citation
DOI: https://doi.org/10.1007/978-3-642-10520-3_106
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10519-7
Online ISBN: 978-3-642-10520-3
eBook Packages: Computer ScienceComputer Science (R0)