Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Two Step Variational Method for Subpixel Optical Flow Computation

  • Conference paper
Advances in Visual Computing (ISVC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5876))

Included in the following conference series:

  • 2614 Accesses

Abstract

We develop an algorithm for the super-resolution optical flow computation by combining variational super-resolution and the variational optical flow computation. Our method first computes the gradient and the spatial difference of a high resolution images from these of low resolution images directly, without computing any high resolution images. Second the algorithm computes optical flow of high resolution image using the results of the first step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Youla, D.: Generalized image restoration by the method of alternating orthogonal projections. IEEE Transactions on Circuits and Systems 25, 694–702 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  2. Stark, H. (ed.): Image Recovery: Theory and Application. Academic Press, New York (1992)

    Google Scholar 

  3. Amiz, T., Lubetzky, E., Kiryati, N.: Coarse to over-fine optical flow estimation. Pattern recognition 40, 2496–2503 (2007)

    Article  Google Scholar 

  4. Ruhnau, P., Knhlberger, T., Schnoerr, C., Nobach, H.: Variatinal optical flow estimation for particle image velocimetry. Experiments in Fluids 38, 21–32 (2005)

    Article  Google Scholar 

  5. Wahba, G., Wendelberger, J.: Some new mathematical methods for variational objective analysis using splines and cross-validation. Monthly Weather Review 108, 36–57 (1980)

    Article  Google Scholar 

  6. Burt, P.J., Andelson, E.H.: The Laplacian pyramid as a compact image coding. IEEE Trans. Communications 31, 532–540 (1983)

    Article  Google Scholar 

  7. Hwan, S., Hwang, S.-H., Lee, U.K.: A hierarchical optical flow estimation algorithm based on the interlevel motion smoothness constraint. Pattern Recognition 26, 939–952 (1993)

    Article  Google Scholar 

  8. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)

    Article  Google Scholar 

  9. Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Computer Surveys 26, 433–467 (1995)

    Article  Google Scholar 

  10. Suter, D.: Motion estimation and vector spline. In: Proceedings of CVPR 1994, pp. 939–942 (1994)

    Google Scholar 

  11. Amodei, L., Benbourhim, M.N.: A vector spline approximation. Journal of Approximation Theory 67, 51–79 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Benbourhim, M.N., Bouhamidi, A.: Approximation of vectors fields by thin plate splines with tension. Journal of Approximation Theory 136, 198–229 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Suter, D., Chen, F.: Left ventricular motion reconstruction based on elastic vector splines. IEEE Trans. Medical Imaging, 295–305 (2000)

    Google Scholar 

  14. Sorzano, C.Ó.S., Thévenaz, P., Unser, M.: Elastic registration of biological images using vector-spline regularization. IEEE Tr. Biomedical Engineering 52, 652–663 (2005)

    Article  Google Scholar 

  15. Steidl, G., Didas, S., Neumann, J.: Splines in higher order TV regularization. IJCV 70, 241–255 (2006)

    Article  Google Scholar 

  16. Grenander, U., Miller, M.: Computational anatomy: An emerging discipline. Quarterly of applied mathematics 4, 617–694 (1998)

    MathSciNet  Google Scholar 

  17. Weickert, J., Schnörr, C.: Variational optic flow computation with a spatio-temporal smoothness constraint. Journal of Mathematical Imaging and Vision 14, 245–255 (2001)

    Article  MATH  Google Scholar 

  18. Weickert, J., Bruhn, A., Papenberg, N., Brox, T.: Variational optic flow computation: From continuous models to algorithms. In: Proceedings of International Workshop on Computer Vision and Image Analysis, IWCVIA 2003 (2003)

    Google Scholar 

  19. Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. International Journal of Computer Vision 67, 141–158 (2006)

    Article  Google Scholar 

  20. Werner, T., Pock, T., Cremers, D., Bischof, H.: An unbiased second-order prior for high-accuracy motion estimation. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 396–405. Springer, Heidelberg (2008)

    Google Scholar 

  21. Rodŕguez, P., Wohlberg, B.: Efficient minimization method for a generalized total variation functional. IEEE Trans. Image Processing 18, 322–332 (2009)

    Google Scholar 

  22. Schmidt, M., Fung, G., Rosales, R.: Fast optimization methods for L1 regularization: A comparative study and two new approaches. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 286–297. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Pock, T., Urschler, M., Zach, C., Beichel, R.R., Bischof, H.: A duality based algorithm for TV-L 1-optical-flow image registration. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 511–518. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L 1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mochizuki, Y., Kameda, Y., Imiya, A., Sakai, T., Imaizumi, T. (2009). Two Step Variational Method for Subpixel Optical Flow Computation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10520-3_106

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10520-3_106

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10519-7

  • Online ISBN: 978-3-642-10520-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics