Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

TOCSAC: TOpology Constraint SAmple Consensus for Fast and Reliable Feature Correspondence

  • Conference paper
Advances in Visual Computing (ISVC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5876))

Included in the following conference series:

  • 2626 Accesses

Abstract

This paper aims at outliers screening for the feature correspondence in image matching. A novel robust matching method, called topology constraint sample consensus (TOCSAC), is proposed to speed up the matching process while keeping the matching accuracy. The TOCSAC method comprises of two parts, the first of which is the constraint of points order, which should be invariant to scale, rotation and view point change. The second one is a constraint of affine invariant vector, which is also used to validate in similar and affine transforms. Comparing to the classical algorithms, such as RANSAC (random sample consensus) and PROSAC (progressive sample consensus), the proposed TOCSAC can significantly reduce time cost and improve the performance for wide base-line image correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision, 2nd edn. Cambridge University, Cambridge (2003)

    Google Scholar 

  2. Chum, O., Matas, J.: Matching with PROSAC – Progressive Sample Consensus. In: CVPR (2005)

    Google Scholar 

  3. Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. CACM 6(24), 381–395 (1981)

    MathSciNet  Google Scholar 

  4. Torr, P.H.S., Zisserman, A.: MLESAC: A new robust estimator with application to estimating image geometry. In: CVIU, pp. 138–156 (2000)

    Google Scholar 

  5. Tordoff, B., Murray, D.: Guided sampling and consensus for motion estimation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 82–96. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Hasler, D., Sbaiz, L., Süsstrunk, S., Vetterli, M.: Outlier Modeling in Image Matching. IEEE Tran. on PAMI 25(3), 301–315 (2003)

    Google Scholar 

  7. Rousseeuw, P.J., Leroy, A.M.: Robust regression and outlier detection. Wiley, New York (1987)

    Book  MATH  Google Scholar 

  8. He, Z., Wang, Q.: A Fast and Effective Dichotomy Based Hash Algorithm for Image Matching. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 328–337. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  10. Brown, M., Lowe, D.: Recognising panoramas. In: Proc. ICCV, pp. 1218–1225 (2003)

    Google Scholar 

  11. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. ACM Trans. Graph. 25(3), 835–846 (2006)

    Article  Google Scholar 

  12. Hays, J., Efros, A.A.: Scene completion using millions of photographs. ACM Transactions on Graphics (SIGGRAPH) 26(3) (2007)

    Google Scholar 

  13. Chum, O., Matas, J., Obdržálek, S.: Enhancing RANSAC by generalized model optimization. In: Proc. of the ACCV, vol. 2, pp. 812–817 (2004)

    Google Scholar 

  14. Márquez-Neila, P., García, J., Baumela, L., Buenaposada, J.M.: Improving RANSAC for Fast Landmark Recognition. In: Workshop on Visual Localization for Mobile Platforms (in conjunction with CVPR 2008), Anchorage, Alaska, USA (2008)

    Google Scholar 

  15. Raguram, R., Frahm, J.M., Pollefeys, M.: A Comparative Analysis of RANSAC Techniques Leading to Adaptive Real-Time Random Sample Consensus. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 500–513. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

He, Z., Wang, Q., Yang, H. (2009). TOCSAC: TOpology Constraint SAmple Consensus for Fast and Reliable Feature Correspondence. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10520-3_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10520-3_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10519-7

  • Online ISBN: 978-3-642-10520-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics