Abstract
This paper aims at outliers screening for the feature correspondence in image matching. A novel robust matching method, called topology constraint sample consensus (TOCSAC), is proposed to speed up the matching process while keeping the matching accuracy. The TOCSAC method comprises of two parts, the first of which is the constraint of points order, which should be invariant to scale, rotation and view point change. The second one is a constraint of affine invariant vector, which is also used to validate in similar and affine transforms. Comparing to the classical algorithms, such as RANSAC (random sample consensus) and PROSAC (progressive sample consensus), the proposed TOCSAC can significantly reduce time cost and improve the performance for wide base-line image correspondence.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hartley, R., Zisserman, A.: Multiple view geometry in computer vision, 2nd edn. Cambridge University, Cambridge (2003)
Chum, O., Matas, J.: Matching with PROSAC – Progressive Sample Consensus. In: CVPR (2005)
Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. CACM 6(24), 381–395 (1981)
Torr, P.H.S., Zisserman, A.: MLESAC: A new robust estimator with application to estimating image geometry. In: CVIU, pp. 138–156 (2000)
Tordoff, B., Murray, D.: Guided sampling and consensus for motion estimation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 82–96. Springer, Heidelberg (2002)
Hasler, D., Sbaiz, L., Süsstrunk, S., Vetterli, M.: Outlier Modeling in Image Matching. IEEE Tran. on PAMI 25(3), 301–315 (2003)
Rousseeuw, P.J., Leroy, A.M.: Robust regression and outlier detection. Wiley, New York (1987)
He, Z., Wang, Q.: A Fast and Effective Dichotomy Based Hash Algorithm for Image Matching. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 328–337. Springer, Heidelberg (2008)
Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. Journal of Computer Vision 60(2), 91–110 (2004)
Brown, M., Lowe, D.: Recognising panoramas. In: Proc. ICCV, pp. 1218–1225 (2003)
Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. ACM Trans. Graph. 25(3), 835–846 (2006)
Hays, J., Efros, A.A.: Scene completion using millions of photographs. ACM Transactions on Graphics (SIGGRAPH) 26(3) (2007)
Chum, O., Matas, J., Obdržálek, S.: Enhancing RANSAC by generalized model optimization. In: Proc. of the ACCV, vol. 2, pp. 812–817 (2004)
Márquez-Neila, P., García, J., Baumela, L., Buenaposada, J.M.: Improving RANSAC for Fast Landmark Recognition. In: Workshop on Visual Localization for Mobile Platforms (in conjunction with CVPR 2008), Anchorage, Alaska, USA (2008)
Raguram, R., Frahm, J.M., Pollefeys, M.: A Comparative Analysis of RANSAC Techniques Leading to Adaptive Real-Time Random Sample Consensus. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 500–513. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
He, Z., Wang, Q., Yang, H. (2009). TOCSAC: TOpology Constraint SAmple Consensus for Fast and Reliable Feature Correspondence. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10520-3_58
Download citation
DOI: https://doi.org/10.1007/978-3-642-10520-3_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10519-7
Online ISBN: 978-3-642-10520-3
eBook Packages: Computer ScienceComputer Science (R0)