Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Indifferentiability Characterization of Hash Functions and Optimal Bounds of Popular Domain Extensions

  • Conference paper
Progress in Cryptology - INDOCRYPT 2009 (INDOCRYPT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5922))

Included in the following conference series:

Abstract

Understanding the principle behind designing a good hash function is important. Nowadays it is getting more importance due to the current SHA3 competition which intends to make a new standard for cryptogrpahic hash functions. Indifferentiability, introduced by Maurer et al in TCC’04, is an appropriate notion for modeling (pseudo)random oracles based on ideal primitives. It also gives a strong security notion for hash-designs. Since then, we know several results providing indifferentiability upper bounds for many hash-designs. Here, we introduce a unified framework for indifferentiability security analysis by providing an indifferentiability upper bound for a wide class of hash designs GDE or generalized domain extension. In our framework, we present an unified simulator and avoid the problem of defining different simulators for different constructions. We show, the probability of some bad event (based on interaction of the attacker with the GDE and the underlying ideal primitve) is actually an upper bound for indifferentiable security. As immediate applications of our result, we provide simple and improved (in fact optimal) indifferentiability upper bounds for HAIFA and tree (with counter) mode of operations. In particular, we show that n-bit HAIFA and tree-hashing with counter have optimal indifferentiability bounds \({\it \Theta}(q\sigma/2^n)\) and \({\it \Theta}(q^2 \log \ell/2^n)\) respectively, where ℓ is the maximum number of blocks in a single query and σ is the total number of blocks in all q queries made by the distinguisher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bellare, M., Rogaway, P.: Random Oracles Are Practical: A Paradigm for Designing Efficient Protocols. In: 1st Conference on Computing and Communications Security, pp. 62–73. ACM, New York (1993)

    Chapter  Google Scholar 

  2. Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension and the EMD Transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Barke, R.: On the Security of Iterated MACs. Diploma Thesis 2003. ETH Zurich

    Google Scholar 

  4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgard Revisited: How to Construct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)

    Google Scholar 

  6. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgard Revisited: How to Construct a Hash Function (full version of [5]), http://cs.nyu.edu/~dodis/ps/merkle.ps

  7. Coron, J.S., Patarin, J., Seurin, Y.: The Random Oracle Model and the Ideal Cipher Model Are Equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 1–20. Springer, Heidelberg (2008)

    Google Scholar 

  8. Damgård, I.: A Design Principles for hash functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

    Google Scholar 

  9. Dodis, Y., Pietrzak, K., Puniya, P.: A new mode of operation for block ciphers and length-preserving MACs. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 198–219. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Dodis, Y., Reyzin, L., Rivest, R., Shen, E.: Indifferentiability of Permutation-Based Compression Functions and Tree-Based Modes of Operation, with Applications to MD6. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 104–123. Springer, Heidelberg (2009)

    Google Scholar 

  11. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damgård for Practical Applications. In: Ghilardi, S. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 371–388. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Chang, D., Lee, S., Nandi, M., Yung, M.: Indifferentiable security analysis of popular hash functions with prefix-free padding. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 283–298. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. In: STOC 1998. ACM, New York (1998)

    Google Scholar 

  14. Maurer, U.: Indistinguishability of Random Systems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results on Reductions, and Applications to the Random Oracle Methodology. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

    Google Scholar 

  16. Nielsen, J.: Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-committing Encryption Case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 191–214. Springer, Heidelberg (2002)

    Google Scholar 

  17. Nandi, M.: A Simple and Unified Method of Proving Indistinguishability. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 317–334. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. SHA 3 official website, http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bhattacharyya, R., Mandal, A., Nandi, M. (2009). Indifferentiability Characterization of Hash Functions and Optimal Bounds of Popular Domain Extensions. In: Roy, B., Sendrier, N. (eds) Progress in Cryptology - INDOCRYPT 2009. INDOCRYPT 2009. Lecture Notes in Computer Science, vol 5922. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10628-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10628-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10627-9

  • Online ISBN: 978-3-642-10628-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics