Abstract
Given an n-node undirected simple graph G and a positive integer k, the k-connectivity labeling problem for G seeks short labels for the nodes of G such that whether any two nodes are k-connected in G can be determined merely by their labels. For k = 1, an optimal solution to the problem is to give each node in the same connected component of G a common ⌈log2 n⌉-bit label, uniquely chosen for this connected component. For k ≥ 2, Katz, Katz, Korman, and Peleg gave the first nontrivial solution to the problem, requiring O(2klogn) bits per node. The best previously known solution, due to Korman, requires O(k 2logn) bits per node. We give the first asymptotically optimal solution to the problem, requiring only \((2k-1)\left\lceil\log_2 n\right\rceil\) bits per node, which matches a lower bound Ω(klogn) proved by Katz, Katz, Korman, and Peleg.
Research supported in part by NSC grants 97-2221-E-002-122 and 98-2221-E-002-079-MY3.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Katz, M., Katz, N.A., Korman, A., Peleg, D.: Labeling schemes for flow and connectivity. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 927–936 (2002)
Katz, M., Katz, N.A., Korman, A., Peleg, D.: Labeling schemes for flow and connectivity. SIAM Journal on Computing 34(1), 23–40 (2005)
Alstrup, S., Rauhe, T.: Small induced-universal graphs and compact implicit graph representations. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, pp. 53–62 (2002)
Korman, A.: Labeling schemes for vertex connectivity. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 102–109. Springer, Heidelberg (2007)
Korman, A.: Labeling schemes for vertex connectivity. ACM Transactions on Algorithms (to appear)
Korman, A., Kutten, S.: Distributed verification of minimum spanning trees. Distributed Computing 20(4), 253–266 (2007)
Breuer, M.A.: Coding the vertexes of a graph. IEEE Transactions on Information Theory 12(2), 148–153 (1966)
Breuer, M.A., Folkman, J.: An unexpected result in coding the vertices of a graph. Journal of Mathematical Analysis and Applications 20(3), 583–600 (1967)
Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM Journal on Discrete Mathematics 5(4), 596–603 (1992)
Peleg, D.: Proximity-preserving labeling schemes and their applications. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 30–41. Springer, Heidelberg (1999)
Katz, M., Katz, N.A., Peleg, D.: Distance labeling schemes for well-separated graph classes. Discrete Applied Mathematics 145(3), 384–402 (2005)
Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. Journal of Algorithms 53(1), 85–112 (2004)
Gavoille, C., Katz, M., Katz, N.A., Paul, C., Peleg, D.: Approximate distance labeling schemes. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 476–487. Springer, Heidelberg (2001)
Kaplan, H., Milo, T.: Short and simple labels for small distances and other functions. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 246–257. Springer, Heidelberg (2001)
Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via 2-hop labels. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 937–946 (2002)
Gavoille, C., Paul, C.: Distance labeling scheme and split decomposition. Discrete Mathematics 273(1-3), 115–130 (2003)
Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. Journal of the ACM 51(6), 993–1024 (2004)
Alstrup, S., Bille, P., Rauhe, T.: Labeling schemes for small distances in trees. SIAM Journal on Discrete Mathematics 19(2), 448–462 (2005)
Korman, A., Peleg, D., Rodeh, Y.: Constructing labeling schemes through universal matrices. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 409–418. Springer, Heidelberg (2006)
Fraigniaud, P., Korman, A.: Compact ancestry labeling schemes for XML trees. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (to appear, 2010)
Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Labeling schemes for tree representation. Algorithmica 53(1), 1–15 (2009)
Fischer, J.: Short labels for lowest common ancestors in trees. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 752–763. Springer, Heidelberg (2009)
Abiteboul, S., Kaplan, H., Milo, T.: Compact labeling schemes for ancestor queries. In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 547–556 (2001)
Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of the 13th Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 1–10 (2001)
Fraigniaud, P., Gavoille, C.: Routing in trees. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757–772. Springer, Heidelberg (2001)
Fraigniaud, P., Gavoille, C.: A space lower bound for routing in trees. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 65–75. Springer, Heidelberg (2002)
Alstrup, S., Rauhe, T.: Improved labeling scheme for ancestor queries. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 947–953 (2002)
Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest common ancestors: a survey and a new distributed algorithm. Theory of Computing Systems 37(3), 441–456 (2004)
Kaplan, H., Milo, T., Shabo, R.: A comparison of labeling schemes for ancestor queries. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 954–963 (2002)
Peleg, D.: Informative labeling schemes for graphs. Theoretical Computer Science 340(3), 577–593 (2005)
Kao, M.Y., Li, X.Y., Wang, W.: Average case analysis for tree labelling schemes. Theoretical Computer Science 378(3), 271–291 (2007)
Cohen, E., Kaplan, H., Milo, T.: Labeling dynamic XML trees. In: Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 271–281 (2002)
Korman, A., Peleg, D., Rodeh, Y.: Labeling schemes for dynamic tree networks. Theory of Computing Systems 37(1), 49–75 (2004)
Korman, A.: General compact labeling schemes for dynamic trees. Distributed Computing 20(3), 179–193 (2007)
Korman, A., Peleg, D.: Labeling schemes for weighted dynamic trees. Information and Computation 205(12), 1721–1740 (2007)
Gavoille, C., Peleg, D.: Compact and localized distributed data structures. Distributed Computing 16(2-3), 111–120 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hsu, TH., Lu, HI. (2009). An Optimal Labeling for Node Connectivity. In: Dong, Y., Du, DZ., Ibarra, O. (eds) Algorithms and Computation. ISAAC 2009. Lecture Notes in Computer Science, vol 5878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10631-6_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-10631-6_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10630-9
Online ISBN: 978-3-642-10631-6
eBook Packages: Computer ScienceComputer Science (R0)