Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Multi-criteria Interval-Valued Intuitionistic Fuzzy Group Decision Making for Supplier Selection with TOPSIS Method

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5908))

Abstract

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method, evaluation of alternatives based on weighted attributes play an important role in the best alternative selection. Practically it is difficult to precisely measure the exact values to the relative importance of the attributes and to the impacts of the alternatives on theses attributes. Therefore, the TOPSIS method has been extended for interval-valued intuitionistic fuzzy data in this paper, to tackle this problem. In addition, supplier selection problem a multi-criteria group decision making problem involving several conflicting criteria is solved with the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–97 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Atanassov, K., Gargov, G.: Interval-valued intuitionistic fuzzy sets. Fuzzy Sets and Systems 31, 343–349 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Atanassov, K.: Operators over interval-valued intuitionistic fuzzy sets. Fuzzy Sets and Systems 64, 159–174 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bustince, H., Burillo, P.: vague sets are intuitionistic fuzzy sets. Fuzzy Sets and Systems 79, 403–405 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gau, W.L., Buehrer, D.J.: Vague sets. IEEE Trans. on Systems, Man and Cybernetics 23, 610–614 (1993)

    Article  MATH  Google Scholar 

  6. Guangtao, F.: A fuzzy optimization method for multi criteria decision making: An application to reservoir flood control operation. Expert System with Application 34, 145–149 (2008)

    Article  Google Scholar 

  7. Hwang, C.L., Yoon, K.: Multiple Attribute Decision Making: Methods and Applications. Springer, Heidelberg (1981)

    MATH  Google Scholar 

  8. Jahanshahlo, G.R., Hosseinzade, L.F., Izadikhah, M.: An algorithmic method to extend TOPSIS for decision making problems with interval data. Applied Mathematics and Computation 175, 1375–1384 (2006)

    Article  Google Scholar 

  9. Jahanshahloo, G.R., Hosseinzaadeh, F.L., Davoodi, A.R.: Extension of TOPSIS for decision-making problems with interval data: Interval efficiency. Mathematical and Computer Modelling 49, 1137–1142 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jahanshahlo, G.R., Hosseinzade, L.F., Izadikhah, M.: Extension of the TOPSIS method for decision making problems with fuzzy data. Applied Mathematics and Computation 181, 1544–1551 (2006)

    Article  Google Scholar 

  11. Triantaphyllou, E., Lin, C.T.: Development and evaluation of five fuzzy multi attribute decision-making methods. International J. of Approximate Reasoning 14, 281–310 (1996)

    Article  MATH  Google Scholar 

  12. Wang, Y.M., Elhag, T.M.S.: Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment. Expert Systems with Applications 31, 309–319 (2006)

    Article  Google Scholar 

  13. Xu, Z.S.: Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making. Control and Decision 22, 215–219 (2007)

    Google Scholar 

  14. Xu, Z.S.: Intuitionistic fuzzy aggregation opterators. IEEE Transaction of Fuzzy Systems 15, 1179–1187 (2007)

    Article  Google Scholar 

  15. Xu, Z.S., Yager, R.R.: Dynamic intuitionistic fuzzy muti-attribute decision making. International journal of Approximate Reasoning 48, 246–262 (2008)

    Article  MathSciNet  Google Scholar 

  16. Xu, Z.S., Yager, R.R.: Some geometric aggregation operators based on intuitionistic fuzzy sets. International J. of General System 35, 417–433 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Xu, Z.S., Chen, J.: Approach to group decision making based on interval-valued intuitionistic judgment matrices. System Engineering – Theory & Practice 27, 126–133 (2007)

    Article  Google Scholar 

  18. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kavita, Yadav, S.P., Kumar, S. (2009). A Multi-criteria Interval-Valued Intuitionistic Fuzzy Group Decision Making for Supplier Selection with TOPSIS Method. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2009. Lecture Notes in Computer Science(), vol 5908. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10646-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10646-0_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10645-3

  • Online ISBN: 978-3-642-10646-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics