Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Combination of Annealing Particle Filter and Belief Propagation for 3D Upper Body Tracking

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5928))

Included in the following conference series:

  • 2638 Accesses

Abstract

3D upper body tracking and modeling is a topic greatly studied by the computer vision society because it is useful in a great number of applications such as human machine interface, companion robots animation or human activity analysis. However there is a challenging problem: the complexity of usual tracking algorithms, that exponentially increases with the dimension of the state vector, becomes too difficult to handle. To tackle this problem, we propose an approach that combines several annealing particle filters defined independently for each limb and belief propagation method to add geometrical constraints between individual filters. Experimental results on a real human gestures sequence will show that this combined approach leads to reliable results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Krauss, R.M., Chen, Y., Chawla, P.: Nonverbal behavior and nonverbal communication: What do conversational hand gestures tell us? In: Zanna, M. (ed.) Advances in experimental social psychology, pp. 389–450. Academic Press, San Diego (1996)

    Google Scholar 

  2. Isard, M., Blake, A.: Conditional density propagation for visual tracking. International Journal of Computer Vision 29(1), 5–28 (1998)

    Article  Google Scholar 

  3. Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 126–133 (2000)

    Google Scholar 

  4. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free energy approximations and generalized belief propagation algorithms. Technical Report 2004-040, MERL (May 2004)

    Google Scholar 

  5. Sigal, L., Isard, M., Sigelman, B.H., Black, M.J.: Attractive people: Assembling loose– limbed models using nonparametric belief propagation. Neural information processing systems (2003)

    Google Scholar 

  6. Sudderth, E.B., Ihler, A.T., Freeman, W.T., Willsky, A.S.: Nonparametric belief propagation. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 605–612 (2003)

    Google Scholar 

  7. Isard, M.: PAMPAS: Real–valued graphical models for computer vision. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 613–620 (2003)

    Google Scholar 

  8. Bernier, O., Cheung-Mon-Chan, P., Bouguet, A.: Fast nonparametric belief propagation for real-time stereo articulated body tracking. Computer Vision and Image Understanding 113, 29–47 (2009)

    Article  Google Scholar 

  9. Shen, C., van den Hengel, A., Dick, A., Brooks, M.J.: 2D Articulated Tracking With Dynamic Bayesian Networks. In: Proceedings of the Fourth International Conference on Computer and Information Technology, pp. 130–136 (2004)

    Google Scholar 

  10. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. on Information Theory 47(9), 498–519 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Noriega, P., Bernier, O.: Multicues 3D Monocular Upper Body Tracking using Constrained Belief Propagation. In: British Machine Vision Conf., Warwick, UK, pp. 680–689 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Renna, I., Achard, C., Chellali, R. (2009). Combination of Annealing Particle Filter and Belief Propagation for 3D Upper Body Tracking. In: Xie, M., Xiong, Y., Xiong, C., Liu, H., Hu, Z. (eds) Intelligent Robotics and Applications. ICIRA 2009. Lecture Notes in Computer Science(), vol 5928. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10817-4_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10817-4_81

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10816-7

  • Online ISBN: 978-3-642-10817-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics