Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Neural Network Pairwise Interaction Fields for Protein Model Quality Assessment

  • Conference paper
Learning and Intelligent Optimization (LION 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5851))

Included in the following conference series:

  • 860 Accesses

Abstract

We present a new knowledge-based Model Quality Assessment Program (MQAP) at the residue level which evaluates single protein structure models. We use a tree representation of the C α trace to train a novel Neural Network Pairwise Interaction Field (NN-PIF) to predict the global quality of a model. We also attempt to extract local quality from global quality. The model allows fast evaluation of multiple different structure models for a single sequence. In our tests on a large set of structures, our model outperforms most other methods based on different and more complex protein structure representations in both local and global quality prediction. The method is available upon request from the authors. Method-specific rankers may also built by the authors upon request.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cozzetto, D., Kryshtafovych, A., Ceriani, M., Tramontano, A.: Assessment of predictions in the model quality assessment category. Proteins 69(suppl. 8), 175–183 (2007)

    Article  Google Scholar 

  2. Cornell, W., Cieplak, P., Bayly, C., Gould, I., Merz, K., Ferguson, D., Spellmeyer, D., Fox, T., Caldwell, J., Kollman, P.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)

    Article  Google Scholar 

  3. MacKerell, A., Bashford, D., Bellott, M., Dunbrack, R., Evanseck, J., Field, M., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F., Mattos, C., Michnick, S., Ngo, T., Nguyen, D., Prodhom, B., Reiher, W., Roux, B., Schlenkrich, M., Smith, J., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M.: All-atom empirical potential for molecular modelling and dynamics studies of proteins. J. Phys. Chem. 102, 3586–3616 (1998)

    Google Scholar 

  4. Scott, W., Hünenberger, P., Tironi, I., Mark, A., Billeter, S., Fennen, J., Torda, A., Huber, T., Krüger, P., van Gunsteren, W.F.: The gromos biomolecular simulation program package. J. Phys. Chem. 103, 3596–3607 (1999)

    Google Scholar 

  5. Krieger, E., Koraimann, G., Vriend, G.: Increasing the precision of comparative models with yasara nova a self-parameterising force field. PROTEINS: Structure, Function, and Bioinformatics 47, 393–402 (2002)

    Article  Google Scholar 

  6. Krieger, E., Darden, T., Nabuurs, S., Finkelstein, A., Vriend, G.: Making optimal use of empirical energy functions: Force-field parameterisation in crystal space. PROTEINS: Structure, Function, and Bioinformatics 57, 678–683 (2004)

    Article  Google Scholar 

  7. Colubri, A., Jha, A., Shen, M., Sali, A., Berry, R., Sosnick, T., Freed, K.: Minimalist representations and the importance of nearest neighbour effects in protein folding simulations. J. Mol. Biol. 363, 835–857 (2006)

    Article  Google Scholar 

  8. Fitzgerald, J., Jha, A., Colubri, A., Sosnick, T., Freed, K.: Reduced c β statistical potentials can outperform all-atom potentials in decoy identification. Protein Science 16, 2123–2139 (2001)

    Article  Google Scholar 

  9. Wu, Y., Lu, M., Chen, M., Li, J., Ma, J.: Opus-c α : A knowledge-based potential function requiring only c α positions. Protein Science 16, 1449–1463 (2007)

    Article  Google Scholar 

  10. Lu, M., Dousis, A., Ma, J.: Opuspsp: An orientation-dependent statistical all-atom potential derived from side-chain packing. J. Mol. Biol. 376, 288–301 (2008)

    Article  Google Scholar 

  11. Leherte, L.: Application of multiresolution analyses to electron density maps of small molecules: Critical point representations for molecular superposition. J. of Math. Chem. 29(1), 47–83 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Simons, K., Kooperberg, T., Huang, E., Baker, D.: Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and bayesian scoring functions. J. Mol. Biol. 268, 209–225 (1997)

    Article  Google Scholar 

  13. Baú, D., Pollastri, G., Vullo, A.: Distill: a machine learning approach to ab initio protein structure prediction. In: Bandyopadhyay, S., Maulik, U., Wang, J.T.L. (eds.) Analysis of Biological Data: A Soft Computing Approach. World Scientific, Singapore (2006)

    Google Scholar 

  14. Wu, S., Skolnick, J., Zhang, Y.: Ab initio modelling of small proteins by iterative tasser simulations. BMC Biology 5, 17 (2007)

    Article  Google Scholar 

  15. Pettitt, C., McGuffin, L., Jones, D.: Improving sequence-based fold recognition by using 3d model quality assessment. Bioinformatics 21(17), 3509–3515 (2005)

    Article  Google Scholar 

  16. Adcock, S.: Peptide backbone reconstruction using dead-end elimination and a knowledge-based forcefield. J. Comput. Chem. 25, 16–27 (2004)

    Article  Google Scholar 

  17. Bower, M., Cohen, F., Dunbrack, R.: Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: A new homology modelling tool. J. Mol. Biol. 267, 1268–1282 (1997)

    Article  Google Scholar 

  18. Khatun, J., Khare, S., Dokhlyan, N.: Can contact potentials reliably predict stability of proteins? J. Mol. Biol. 336, 1223–1238 (2004)

    Article  Google Scholar 

  19. Zhou, H., Zhou, Y.: Distance-scaled, finite ideal-gas reference state improves and stability prediction structure-derived potentials of mean force for structure selection. Protein Science 11, 2714–2726 (2002)

    Article  Google Scholar 

  20. Hoppe, C., Schomburg, D.: Prediction of protein thermostability with a direction- and distance-dependent knowledge-based potential. Protein Science 14, 2682–2692 (2005)

    Article  Google Scholar 

  21. Shao, Y., Bystroff, C.: Predicting interresidue contacts using templates and pathways. PROTEINS: Structure, Function, and Bioinformatics 53, 497–502 (2003)

    Article  Google Scholar 

  22. Vullo, A., Walsh, I., Pollastri, G.: A two-stage approach for improved prediction of residue contact maps. BMC Bioinformatics 7, 18 (2006)

    Article  Google Scholar 

  23. Martin, A., Baú, D., Walsh, I., Vullo, A., Pollastri, G.: Long-range information and physicality constraints improve predicted protein contact maps. Journal of Bioinformatics and Computational Biology 6(5) (2008)

    Google Scholar 

  24. Kleywegt, G.: Validation of protein models from c-alpha coordinates alone. J. Mol. Biol. 273, 371–376 (1997)

    Article  Google Scholar 

  25. Ngan, S., Inouye, M., Samudrala, R.: A knowledge-based scoring function based on residue triplets for protein structure prediction. Protein Engineering, Desing & Selection 19(5), 187–193 (2006)

    Article  Google Scholar 

  26. Feng, Y., Kloczkowski, A., Jernigan, R.: Four-body contact potentials derived from two protein datasets to discriminate native structures from decoys. PROTEINS: Structure, Function, and Bioinformatics 68, 57–66 (2007)

    Article  Google Scholar 

  27. Loose, C., Klepeis, J., Floudas, C.: A new pairwise folding potential based on improved decoy generation and side-chain packing. PROTEINS: Structure, Function, and Bioinformatics 54, 303–314 (2004)

    Article  Google Scholar 

  28. Heo, M., Kim, S., Moon, E., Cheon, M., Chung, K., Chang, I.: Perceptron learning of pairwise contact energies for proteins incorporating the amino acid environment. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 011906 (2005)

    Google Scholar 

  29. Sippl, M.: Recognition of errors in three-dimensional structures of proteins. PROTEINS: Structure, Function, and Bioinformatics 17, 355–362 (1993)

    Article  Google Scholar 

  30. Benkert, P., Tosatto, S., Schomburg, D.: Qmean: A comprehensive scoring function for model quality assessment. PROTEINS: Structure, Function, and Bioinformatics 71(1), 261–277 (2008)

    Article  Google Scholar 

  31. Dong, Q., Wang, X., Lin, L.: Novel knowledge-based mean force potential at the profile level. BMC Bioinformatics 7, 324 (2006)

    Article  Google Scholar 

  32. Zhang, C., Kim, S.: Environment-dependent residue contact energies for proteins. PNAS 97(6), 2550–2555 (2000)

    Article  Google Scholar 

  33. Fogolari, F., Pieri, L., Dovier, A., Bortolussi, L., Giugliarelli, G., Corazza, A., Esposito, G., Viglino, P.: Scoring predictive models using a reduced representation of proteins: model and energy definition. BMC Structural Biology 7(15), 17 (2007)

    Google Scholar 

  34. Wallner, B., Elofsson, A.: Can correct protein models be identified? Protein Science 12, 1073–1086 (2003)

    Article  Google Scholar 

  35. Wallner, B., Elofsson, A.: Identification of correct regions in protein models using structural, alignment, and consensus information. Protein Science 15, 900–913 (2006)

    Article  Google Scholar 

  36. Samudrala, R., Moult, J.: An all-atom distance-dependent conditional probability discriminatory function for protein structure prediction. J. Mol. Biol. 275, 895–916 (1998)

    Article  Google Scholar 

  37. Eisenberg, D., Lthy, R., Bowie, J.: Verify 3d: assessment of protein models with three-dimensional profiles. Methods Enzymol. 277, 396–404 (1997)

    Article  Google Scholar 

  38. Wallner, B., Fang, H., Elofsson, A.: Automatic consensus-based fold recognition using pcons, proq, and pmodeller. PROTEINS: Structure, Function, and Genetics 53, 534–541 (2003)

    Article  Google Scholar 

  39. McGuffin, L.: Benchmarking consensus model quality assessment for protein fold recognition. BMC Bioinformatics 8, 15 (2007)

    Article  Google Scholar 

  40. Wallner, B., Elofsson, A.: Prediction of global and local model quality in casp7 using pcons and proq. PROTEINS: Structure, Function, and Bioinformatics 69(suppl. 8), 184–193 (2007)

    Article  Google Scholar 

  41. Ginalski, K., Elofsson, A., Fischer, D., Rychlewski, L.: 3d-jury: a simple approach to improve protein structure predictions. Bioinformatics 19(8), 1015–1018 (2003)

    Article  Google Scholar 

  42. Qiu, J., Sheffler, W., Baker, D., Noble, W.: Ranking predicted protein structures with support vector regression. PROTEINS: Structure, Function, and Bioinformatics 71, 1175–1182 (2008)

    Article  Google Scholar 

  43. Zhou, H., Skolnick, J.: Protein model quality assessment prediction by combining fragment comparisons and a consensus ca contact potential. PROTEINS: Structure, Function, and Bioinformatics 71, 1211–1218 (2008)

    Article  Google Scholar 

  44. Battey, J., Kopp, J., Bordoli, L., Read, R., Clarke, N., Schwede, T.: Automated server predictions in casp7. Proteins 69(suppl. 8), 68–82 (2007)

    Article  Google Scholar 

  45. Sperduti, A., Starita, A.: Supervised neural networks for the classification of structures. IEEETNN 8(3), 714–735 (1997)

    Google Scholar 

  46. Frasconi, P.: An introduction to learning structured information. In: Giles, C.L., Gori, M. (eds.) IIASS-EMFCSC-School 1997. LNCS (LNAI), vol. 1387, pp. 99–120. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  47. Frasconi, P., Gori, M., Sperduti, A.: A general framework for adaptive processing of data structures. IEEETNN 9(5), 768–786 (1998)

    Google Scholar 

  48. Martin, J., Letellier, G., Marin, A., Taly, J., de Brevern, A.G., Gibrat, J.F.: Protein secondary structure assignment revisited: a detailed analysis of different assignment methods. BMC Struct. Biol. 5, 17 (2005)

    Article  Google Scholar 

  49. Majumdar, I., Krishna, S., Grishin, N.: Palsse: A program to delineate linear secondary structural elements from protein structures. BMC Bioinformatics 6(202), 24 (2005)

    Google Scholar 

  50. Labesse, G., Colloc’h, N., Pothier, J., Mornon, J.: P-sea: a new efficient assignment of secondary structure from c alpha trace of proteins. CABIOS 13(3), 291–295 (1997)

    Google Scholar 

  51. Hamelryck, T.: An amino acid has two sides: A new 2d measure provides a different view of solvent exposure. PROTEINS: Structure, Function, and Bioinformatics 59, 38–48 (2005)

    Article  Google Scholar 

  52. Zemla, A., Venclovas, C., Moult, J., Fidelis, K.: Processing and analysis of casp3 protein structure predictions. Proteins 37(suppl. 3), 22–29 (1999)

    Article  Google Scholar 

  53. Siew, N., Elofsson, A., Rychlewski, L., Fischer, D.: MaxSub: an automated measure for the assessment of protein structure prediction quality. Bioinformatics 16(9), 776–785 (2000)

    Article  Google Scholar 

  54. Cristobal, S., Zemla, A., Fischer, D., Rychlewski, L., Elofsson, A.: A study of quality measures for protein threading models. BMC Bioinformatics 2(5), 15 (2001)

    Google Scholar 

  55. Zhang, Y., Skolnick, J.: Scoring function for automated assessment of protein structure template quality. PROTEINS: Structure, Function, and Bioinformatics 57, 702–710 (2004)

    Article  Google Scholar 

  56. Tsai, J., Bonneau, R., Morozov, A., Kuhlman, B., Rohl, C., Baker, D.: An improved protein decoy set for testing energy functions for protein structure prediction. PROTEINS: Structure, Function, and Bioinformatics 53, 76–87 (2003)

    Article  Google Scholar 

  57. Tosatto, S.: The victor/FRST function for model quality estimation. J. Comput. Biol. 12(10), 1316–1327 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martin, A.J.M., Vullo, A., Pollastri, G. (2009). Neural Network Pairwise Interaction Fields for Protein Model Quality Assessment. In: Stützle, T. (eds) Learning and Intelligent Optimization. LION 2009. Lecture Notes in Computer Science, vol 5851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11169-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11169-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11168-6

  • Online ISBN: 978-3-642-11169-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics