Abstract
We present a new technique to prove termination of Term Rewriting Systems, with full automation. A crucial task in this context is to find suitable well-founded orderings. A popular approach consists in interpreting terms into a domain equipped with an adequate well-founded ordering. In addition to the usual interpretations: natural numbers or polynomials over integer/rational numbers, the recently introduced matrix based interpretations have proved to be very efficient regarding termination of string rewriting and of term rewriting. In this spirit we propose to interpret terms as polynomials over integer matrices. Designed for term rewriting, our generalisation subsumes previous approaches allowing for more orderings without increasing the search space. Thus it performs better than the original version. Another advantage is that, interpreting terms to actual polynomials of matrices, it opens the way to matrix non linear interpretations. This result is implemented in the CiME3 rewriting toolkit.
Work partially supported by A3PAT project of the French ANR (ANR-05-BLAN-0146-01).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Annov, E., Codish, M., Giesl, J., Schneider-Kamp, P., Thiemann, R.: A Sat-Based Implementation for rpo Termination. In: International Conference on Logic for Programming, Artificial Intelligence and Reasoning (Short Paper) (November 2006)
Arts, T., Giesl, J.: Termination of Term Rewriting Using Dependency Pairs. Theoretical Computer Science 236, 133–178 (2000)
Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)
Cherifa, A.B., Lescanne, P.: Termination of Rewriting Systems by Polynomial Interpretations and Its Implementation. Science of Computer Programming 9(2), 137–159 (1987)
Contejean, E., Courtieu, P., Forest, J., Pons, O., Urbain, X.: Certification of Automated Termination Proofs. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 148–162. Springer, Heidelberg (2007)
Contejean, É., Marché, C., Tomás, A.P., Urbain, X.: Mechanically Proving Termination Using Polynomial Interpretations. Journal of Automated Reasoning 34(4), 325–363 (2005)
Courtieu, P., Forest, J., Urbain, X.: Certifying a Termination Criterion Based on Graphs, without Graphs. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 183–198. Springer, Heidelberg (2008)
Dershowitz, N.: Orderings for Term Rewriting Systems. Theoretical Computer Science 17(3), 279–301 (1982)
Dershowitz, N., Jouannaud, J.-P.: Rewrite Systems. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 243–320. North-Holland, Amsterdam (1990)
Eén, N., Biere, A.: Effective Preprocessing in SAT Through Variable and Clause Elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)
Endrullis, J., Waldmann, J., Zantema, H.: Matrix Interpretations for Proving Termination of Term Rewriting. Jar 40(2-3), 195–220 (2008)
Fuhs, C., Middeldorp, A., Schneider-Kamp, P., Zankl, H.: Sat Solving for Termination Analysis with Polynomial Interpretations. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer, Heidelberg (2007)
Geser, A.: Relative Termination. Dissertation, Fakultät für Mathematik und Informatik, Universität Passau, Germany (1990) 105 pages. Also available as: Report 91-03, Ulmer Informatik-Berichte, Universität Ulm (1991)
Giesl, J. (ed.): RTA 2005. LNCS, vol. 3467. Springer, Heidelberg (2005)
Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and Improving Dependency Pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)
Hofbauer, D., Waldmann, J.: Termination of String Rewriting with Matrix Interpretations. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 328–342. Springer, Heidelberg (2006)
Koprowski, A., Waldmann, J.: Arctic Termination..Below Zero. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 202–216. Springer, Heidelberg (2008)
Kusakari, K., Nakamura, M., Toyama, Y.: Argument Filtering Transformation. In: Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 47–61. Springer, Heidelberg (1999)
Lankford, D.S.: On Proving Term Rewriting Systems Are Noetherian. Technical Report MTP-3, Mathematics Department, Louisiana Tech. Univ. (1979), http://perso.ens-lyon.fr/pierre.lescanne/not_accessible.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Courtieu, P., Gbedo, G., Pons, O. (2010). Improved Matrix Interpretation. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds) SOFSEM 2010: Theory and Practice of Computer Science. SOFSEM 2010. Lecture Notes in Computer Science, vol 5901. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11266-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-11266-9_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11265-2
Online ISBN: 978-3-642-11266-9
eBook Packages: Computer ScienceComputer Science (R0)