Abstract
Symbolic characterizations of bisimilarities for the applied pi-calculus proposed so far are sound but incomplete, even restricted to the finite fragment of the calculus. In this paper we present a novel approach to symbolic semantics for the applied pi-calculus, leading to a notion of symbolic bisimulation which is both sound and complete with respect to the standard concrete bisimulation. Moreover, our approach accommodates recursions hence works for the full calculus.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abadi, M., Cortier, V.: Deciding Knowledge in Security Protocols under Equational Theories. Theor. Comput. Sci. 367(1-2), 2–32 (2006)
Abadi, M., Fournet, C.: Mobile Values, New Names, and Secure Communication. In: POPL, pp. 104–115 (2001)
Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: the spi Calculus. In: CCS 1997: Proceedings of the 4th ACM Conference on Computer and Communications Security, pp. 36–47. ACM, New York (1997)
Baudet, M.: Deciding Security of Protocols against Off-Line Quessing Attacks. In: CCS 2005: Proceedings of the 12th ACM Conference on Computer and Communications Security, pp. 16–25. ACM, New York (2005)
Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-Calculi: Mobile Processes, Nominal Data, and Logic. In: LICS 2009: Proceedings of the 2009 24th Annual IEEE Symposium on Logic In Computer Science, pp. 39–48 (2009)
Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In: CSFW 2001: Proceedings of the 14th IEEE Workshop on Computer Security Foundations, p. 82 (2001)
Blanchet, B., Abadi, M., Fournet, C.: Automated Verification of Selected Equivalences for Security Protocols. In: LICS, pp. 331–340 (2005)
Boreale, M., Buscemi, M.: A Method for Symbolic Analysis of Security Protocols. Theor. Comput. Sci. 338(1-3), 393–425 (2005)
Boreale, M., De Nicola, R.: A Symbolic Semantics for the Pi-Calculus. Inf. Comput. 126(1), 34–52 (1996)
Borgström, J.: A Complete Symbolic Bisimilarity for an Extended spi Calculus. Electron. Notes Theor. Comput. Sci. 242(3) (2009)
Borgström, J., Briais, S., Nestmann, U.: Symbolic Bisimulation in the spi Calculus. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 161–176. Springer, Heidelberg (2004)
Comon-Lundh, H., Shmatikov, V.: Intruder Deductions, Constraint Solving and Insecurity Decision in Presence of Exclusive or. In: LICS 2003: Proceedings of the 18th Annual IEEE Symposium on Logic in Computer Science, p. 271 (2003)
Delaune, S., Kremer, S., Ryan, M.D.: Symbolic Bisimulation for the Applied Pi Calculus. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 133–145. Springer, Heidelberg (2007)
Delaune, S., Kremer, S., Ryan, M.D.: Symbolic Bisimulation for the Applied pi Calculus. Journal of Computer Security (to appear, 2009)
Hennessy, M., Lin, H.: Symbolic Bisimulations. Theor. Comput. Sci. 138(2), 353–389 (1995)
Hennessy, M., Lin, H.: Proof Systems for Message-Passing Process Algebras. Formal Asp. Comput. 8(4), 379–407 (1996)
Johansson, M., Parrow, J., Victor, B., Bengtson, J.: Extended Pi-Calculi. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 87–98. Springer, Heidelberg (2008)
Lin, H.: Complete Inference Systems for Weak Bisimulation Equivalences in the Pi-Calculus. Inf. Comput. 180(1), 1–29 (2003)
Liu, J., Lin, H.: A Complete Symbolic Bisimulation for Full Applied pi Calculus (full version) (2009), http://lcs.ios.ac.cn/~jliu
Millen, J., Shmatikov, V.: Constraint Solving for Bounded-Process Cryptographic Protocol Analysis. In: CCS 2001: Proceedings of the 8th ACM Conference on Computer and Communications Security, pp. 166–175. ACM, New York (2001)
Milner, R.: Communicating and Mobile Systems: the pi Calculus. Cambridge University Press, Cambridge (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, J., Lin, H. (2010). A Complete Symbolic Bisimulation for Full Applied Pi Calculus. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds) SOFSEM 2010: Theory and Practice of Computer Science. SOFSEM 2010. Lecture Notes in Computer Science, vol 5901. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11266-9_46
Download citation
DOI: https://doi.org/10.1007/978-3-642-11266-9_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11265-2
Online ISBN: 978-3-642-11266-9
eBook Packages: Computer ScienceComputer Science (R0)