Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Vertex Ranking with Capacity

  • Conference paper
SOFSEM 2010: Theory and Practice of Computer Science (SOFSEM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5901))

Abstract

Vertex ranking has many practical applications, ranging from VLSI layout and sparse matrix factorization to parallel query processing and assembly of modular products.

Much research has been done on vertex ranking and related problems, polynomial time algorithms are known for a wide variety of graph classes as well as NP-hardness has been shown for other graph classes. In this paper we propose an extension to vertex ranking. Vertex ranking has many applications in computing a parallel schedule, but there is the assumption that the amount of parallel capacity is unbounded. Many applications do have restricted capacity, such as the number of processors or machines. Therefore we introduce vertex ranking with capacity.

In this paper we show that vertex ranking and vertex ranking with capacity do not have a polynomial sized kernel, unless all coNP-complete problems have distillation algorithms. Having to deal with the NP- hardness of both problems, we give, to our knowledge, the first O *(2n) time exact algorithm for vertex ranking and use this for devising an O *(2.5875n) time algorithm for vertex ranking with capacity. We also show that we can transform vertex rankings to vertex rankings with capacity, and use this for a polynomial time algorithm that transforms an f(n)-approximate vertex ranking to a vertex ranking with capacity of at most f(n) + 1 times the optimum size. Lastly, give an log(c) additive approximation for vertex ranking with capacity when restricted to trees and extend this to graphs of bounded treewidth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aspvall, B., Heggernes, P.: Finding Minimum Height Elimination Trees for Interval Graphs in Polynomial Time. BIT 34, 484–509 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bodlaender, H.L.: A Tourist Quide through Treewidth. Acta Cybernetica 11, 1–23 (1993)

    MATH  MathSciNet  Google Scholar 

  3. Bodlaender, H.L.: Discovering Treewidth. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer, Heidelberg (2005)

    Google Scholar 

  4. Bodlaender, H.L., Deogun, J.S., Jansen, K., Kloks, T., Kratsch, D., Müller, H., Tuza, Z.: Rankings of Graphs. SIAM Journal on Discrete Mathematics 11, 168–181 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels (Extended abstract). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating Treewidth, Pathwidth, Frontsize, and Minimum Elimination Tree Height. Journal of Algorithms 18, 238–255 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Courcelle, B.: Graph Rewriting: An Algebraic and Logic Approach. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, pp. 194–242. Elsevier, Amsterdam (1990)

    Google Scholar 

  8. Deogun, J.S., Kloks, T., Kratsch, D., Müller, H.: On Vertex Ranking for Permutations and Other Graphs. Discrete Applied Mathematics 98, 39–63 (1993)

    Article  Google Scholar 

  9. Deogun, J.S., Kloks, T., Kratsch, D., Müller, H.: On the Vertex Ranking Problem for Trapezoid, Circular-Arc and Other Graphs. Discrete Applied Mathematics 98, 39–63 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dereniowski, D.: Edge Ranking and Searching in Partial Orders. Discrete Applied Mathematics 156(13), 2493–2500 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dereniowski, D., Kubale, M.: Efficient Parallel Query Processing by Graph Ranking. Fundamenta Informaticae 69(3), 273–285 (2006)

    MATH  MathSciNet  Google Scholar 

  12. Dereniowski, D., Nadolski, A.: Vertex Rankings of Chordal Graphs and Weighted Trees. Information Processing Letters 98, 96–100 (2006)

    Article  MathSciNet  Google Scholar 

  13. Friedman, H., Robertson, N., Seymour, P.D.: The Metamathematics of the Graph Minor Theorem. Contemporary Mathematics 65, 229–261 (1987)

    MathSciNet  Google Scholar 

  14. Hsieh, S.: On Vertex Ranking of a Starlike Graph. Information Processing Letters 82(5), 131–135 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hung, R.-W.: Optimal Vertex Ranking of Block Graphs. Information and Computation 206(11), 1288–1302 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Iyer, A.V., Ratliff, H.D., Vijayan, G.: Optimal Node Ranking of Trees. Information Processing Letters 28(12), 225–229 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Iyer, A.V., Ratliff, H.D., Vijayan, G.: Parallel Assembly of Modular Products an Analysis. Information Processing Letters 28(5), 225–229 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kashem, M.A., Zhou, X., Nishizeki, T.: Algorithms for Generalized Vertex-Rankings of Partial k-Trees. Theoretical Computer Science 240, 407–427 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Katchalski, M., McCuaig, W., Seager, S.: Ordered Colourings. Discrete Mathematics 142(1-3), 141–154 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kloks, T., Müller, H., Wong, C.K.: Vertex Ranking of Asteroid Triple-Free Graphs. Information Processing Letters 68, 201–206 (1998)

    Article  MathSciNet  Google Scholar 

  21. Liu, J.W.H.: The Role of Elimination Trees in Sparse Factorization. SIAM Journal on Matrix Analysis and Applications 11(1), 134–172 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. Llewellyn, D.C., Tovey, C., Trick, M.: Local Optimization on Graphs. Discrete Appl. Math. 23(2), 157–178 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  23. Makino, K., Uno, Y., Ibaraki, T.: Minimum Edge Ranking Spanning Trees. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 398–409. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  24. Schäffer, A.A.: Optimal Node Ranking of Trees in Linear Time. Information Processing Letters 33(2), 91–96 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. de la Torre, P., Greenlaw, R., Schäffer, A.A.: Optimal Edge Ranking of Trees in Polynomial Time. Algorithmica 13, 592–618 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhou, X., Nagai, N., Nishizeki, T.: Generalized Vertex-Rankings of Trees. Information Processing Letters 56(6), 321–328 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van der Zwaan, R. (2010). Vertex Ranking with Capacity. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds) SOFSEM 2010: Theory and Practice of Computer Science. SOFSEM 2010. Lecture Notes in Computer Science, vol 5901. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11266-9_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11266-9_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11265-2

  • Online ISBN: 978-3-642-11266-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics