Abstract
Vertex ranking has many practical applications, ranging from VLSI layout and sparse matrix factorization to parallel query processing and assembly of modular products.
Much research has been done on vertex ranking and related problems, polynomial time algorithms are known for a wide variety of graph classes as well as NP-hardness has been shown for other graph classes. In this paper we propose an extension to vertex ranking. Vertex ranking has many applications in computing a parallel schedule, but there is the assumption that the amount of parallel capacity is unbounded. Many applications do have restricted capacity, such as the number of processors or machines. Therefore we introduce vertex ranking with capacity.
In this paper we show that vertex ranking and vertex ranking with capacity do not have a polynomial sized kernel, unless all coNP-complete problems have distillation algorithms. Having to deal with the NP- hardness of both problems, we give, to our knowledge, the first O *(2n) time exact algorithm for vertex ranking and use this for devising an O *(2.5875n) time algorithm for vertex ranking with capacity. We also show that we can transform vertex rankings to vertex rankings with capacity, and use this for a polynomial time algorithm that transforms an f(n)-approximate vertex ranking to a vertex ranking with capacity of at most f(n) + 1 times the optimum size. Lastly, give an log(c) additive approximation for vertex ranking with capacity when restricted to trees and extend this to graphs of bounded treewidth.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aspvall, B., Heggernes, P.: Finding Minimum Height Elimination Trees for Interval Graphs in Polynomial Time. BIT 34, 484–509 (1994)
Bodlaender, H.L.: A Tourist Quide through Treewidth. Acta Cybernetica 11, 1–23 (1993)
Bodlaender, H.L.: Discovering Treewidth. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer, Heidelberg (2005)
Bodlaender, H.L., Deogun, J.S., Jansen, K., Kloks, T., Kratsch, D., Müller, H., Tuza, Z.: Rankings of Graphs. SIAM Journal on Discrete Mathematics 11, 168–181 (1998)
Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels (Extended abstract). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)
Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating Treewidth, Pathwidth, Frontsize, and Minimum Elimination Tree Height. Journal of Algorithms 18, 238–255 (1995)
Courcelle, B.: Graph Rewriting: An Algebraic and Logic Approach. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, pp. 194–242. Elsevier, Amsterdam (1990)
Deogun, J.S., Kloks, T., Kratsch, D., Müller, H.: On Vertex Ranking for Permutations and Other Graphs. Discrete Applied Mathematics 98, 39–63 (1993)
Deogun, J.S., Kloks, T., Kratsch, D., Müller, H.: On the Vertex Ranking Problem for Trapezoid, Circular-Arc and Other Graphs. Discrete Applied Mathematics 98, 39–63 (1999)
Dereniowski, D.: Edge Ranking and Searching in Partial Orders. Discrete Applied Mathematics 156(13), 2493–2500 (2008)
Dereniowski, D., Kubale, M.: Efficient Parallel Query Processing by Graph Ranking. Fundamenta Informaticae 69(3), 273–285 (2006)
Dereniowski, D., Nadolski, A.: Vertex Rankings of Chordal Graphs and Weighted Trees. Information Processing Letters 98, 96–100 (2006)
Friedman, H., Robertson, N., Seymour, P.D.: The Metamathematics of the Graph Minor Theorem. Contemporary Mathematics 65, 229–261 (1987)
Hsieh, S.: On Vertex Ranking of a Starlike Graph. Information Processing Letters 82(5), 131–135 (2002)
Hung, R.-W.: Optimal Vertex Ranking of Block Graphs. Information and Computation 206(11), 1288–1302 (2008)
Iyer, A.V., Ratliff, H.D., Vijayan, G.: Optimal Node Ranking of Trees. Information Processing Letters 28(12), 225–229 (1988)
Iyer, A.V., Ratliff, H.D., Vijayan, G.: Parallel Assembly of Modular Products an Analysis. Information Processing Letters 28(5), 225–229 (1988)
Kashem, M.A., Zhou, X., Nishizeki, T.: Algorithms for Generalized Vertex-Rankings of Partial k-Trees. Theoretical Computer Science 240, 407–427 (2000)
Katchalski, M., McCuaig, W., Seager, S.: Ordered Colourings. Discrete Mathematics 142(1-3), 141–154 (1995)
Kloks, T., Müller, H., Wong, C.K.: Vertex Ranking of Asteroid Triple-Free Graphs. Information Processing Letters 68, 201–206 (1998)
Liu, J.W.H.: The Role of Elimination Trees in Sparse Factorization. SIAM Journal on Matrix Analysis and Applications 11(1), 134–172 (1990)
Llewellyn, D.C., Tovey, C., Trick, M.: Local Optimization on Graphs. Discrete Appl. Math. 23(2), 157–178 (1989)
Makino, K., Uno, Y., Ibaraki, T.: Minimum Edge Ranking Spanning Trees. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 398–409. Springer, Heidelberg (1999)
Schäffer, A.A.: Optimal Node Ranking of Trees in Linear Time. Information Processing Letters 33(2), 91–96 (1989)
de la Torre, P., Greenlaw, R., Schäffer, A.A.: Optimal Edge Ranking of Trees in Polynomial Time. Algorithmica 13, 592–618 (1995)
Zhou, X., Nagai, N., Nishizeki, T.: Generalized Vertex-Rankings of Trees. Information Processing Letters 56(6), 321–328 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
van der Zwaan, R. (2010). Vertex Ranking with Capacity. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds) SOFSEM 2010: Theory and Practice of Computer Science. SOFSEM 2010. Lecture Notes in Computer Science, vol 5901. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11266-9_64
Download citation
DOI: https://doi.org/10.1007/978-3-642-11266-9_64
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11265-2
Online ISBN: 978-3-642-11266-9
eBook Packages: Computer ScienceComputer Science (R0)