Abstract
Given an undirected graph G with n nodes, the Maximum Leaf Spanning Tree problem asks to find a spanning tree of G with as many leaves as possible. When parameterized in the number of leaves k, this problem can be solved in time O(4kpoly(n)) using a simple branching algorithm introduced by a subset of the authors [13]. Daligault, Gutin, Kim, and Yeo [6] improved this branching algorithm and obtained a running time of O(3.72kpoly(n)). In this paper, we study the problem from an exact exponential time point of view, where it is equivalent to the Connected Dominating Set problem. For this problem Fomin, Grandoni, and Kratsch showed how to break the Ω(2n) barrier and proposed an O(1.9407n) time algorithm [10]. Based on some properties of [6] and [13], we establish a branching algorithm whose running time of O(1.8966n) has been analyzed using the Measure-and-Conquer technique. Finally we provide a lower bound of Ω(1.4422n) for the worst case running time of our algorithm.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bodlaender, H.L.: On linear time minor tests with depth-first search. J. Algorithms 14(1), 1–23 (1993)
Bonsma, P.: Sparse cuts, matching-cuts and leafy trees in graphs. PhD thesis, University of Twente, the Netherlands (2006)
Bonsma, P.S., Brueggemann, T., Woeginger, G.J.: A faster FPT algorithm for finding spanning trees with many leaves. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 259–268. Springer, Heidelberg (2003)
Bonsma, P.S., Zickfeld, F.: Spanning trees with many leaves in graphs without diamonds and blossoms. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 531–543. Springer, Heidelberg (2008)
Dai, F., Wu, J.: An extended localized algorithm for connected dominating set formation in ad hoc wireless networks. IEEE Transactions on Parallel and Distributed Systems 15(10), 908–920 (2004)
Daligault, J., Gutin, G., Kim, E.J., Yeo, A.: FPT Algorithms and Kernels for the Directed k-Leaf Problem. CoRR abs/0810.4946 (2008); also: J. Comput. System Sci. (2009), doi:10.1016/j.jcss.2009.06.005
Downey, R.G., Fellows, M.R.: Parameterized computational feasibility. In: Feasible Mathematics II, pp. 219–244. Birkhäuser, Boston (1995)
Estivill-Castro, V., Fellows, M.R., Langston, M.A., Rosamond, F.A.: FPT is P-time extremal structure I. In: Proc. of 1st ACiD, pp. 1–41. College Publications (2005)
Fellows, M.R., McCartin, C., Rosamond, F.A., Stege, U.: Coordinatized kernels and catalytic reductions: An improved FPT algorithm for max leaf spanning tree and other problems. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 240–251. Springer, Heidelberg (2000)
Fomin, F.V., Grandoni, F., Kratsch, D.: Solving connected dominating set faster than 2n. Algorithmica 52(2), 153–166 (2008)
Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. J. ACM 56(5) (2009)
Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, San Francisco (1979)
Kneis, J., Langer, A., Rossmanith, P.: A new algorithm for finding trees with many leaves. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 270–281. Springer, Heidelberg (2008)
Liang, W.: Constructing minimum-energy broadcast trees in wireless ad hoc networks. In: Proc. of 3rd MOBIHOC, pp. 112–122 (2002)
Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford University Press, Oxford (2006)
Park, M.A., Willson, J., Wang, C., Thai, M., Wu, W., Farago, A.: A dominating and absorbent set in a wireless ad-hoc network with different transmission ranges. In: Proc. of 8th MOBIHOC, pp. 22–31. ACM, New York (2007)
Raman, V., Saurabh, S., Sikdar, S.: Improved exact exponential algorithms for vertex bipartization and other problems. In: Coppo, M., Lodi, E., Pinna, G.M. (eds.) ICTCS 2005. LNCS, vol. 3701, pp. 375–389. Springer, Heidelberg (2005)
Thai, M., Wang, F., Liu, D., Zhu, S., Du. Connected, D.Z.: dominating sets in wireless networks with different transmission ranges. IEEE Trans. Mobil. Comp. 6(7), 721–730 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fernau, H. et al. (2009). An Exact Algorithm for the Maximum Leaf Spanning Tree Problem. In: Chen, J., Fomin, F.V. (eds) Parameterized and Exact Computation. IWPEC 2009. Lecture Notes in Computer Science, vol 5917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11269-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-11269-0_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11268-3
Online ISBN: 978-3-642-11269-0
eBook Packages: Computer ScienceComputer Science (R0)