Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Exact Algorithm for the Maximum Leaf Spanning Tree Problem

  • Conference paper
Parameterized and Exact Computation (IWPEC 2009)

Abstract

Given an undirected graph G with n nodes, the Maximum Leaf Spanning Tree problem asks to find a spanning tree of G with as many leaves as possible. When parameterized in the number of leaves k, this problem can be solved in time O(4kpoly(n)) using a simple branching algorithm introduced by a subset of the authors [13]. Daligault, Gutin, Kim, and Yeo [6] improved this branching algorithm and obtained a running time of O(3.72kpoly(n)). In this paper, we study the problem from an exact exponential time point of view, where it is equivalent to the Connected Dominating Set problem. For this problem Fomin, Grandoni, and Kratsch showed how to break the Ω(2n) barrier and proposed an O(1.9407n) time algorithm [10]. Based on some properties of [6] and [13], we establish a branching algorithm whose running time of O(1.8966n) has been analyzed using the Measure-and-Conquer technique. Finally we provide a lower bound of Ω(1.4422n) for the worst case running time of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bodlaender, H.L.: On linear time minor tests with depth-first search. J. Algorithms 14(1), 1–23 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bonsma, P.: Sparse cuts, matching-cuts and leafy trees in graphs. PhD thesis, University of Twente, the Netherlands (2006)

    Google Scholar 

  3. Bonsma, P.S., Brueggemann, T., Woeginger, G.J.: A faster FPT algorithm for finding spanning trees with many leaves. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 259–268. Springer, Heidelberg (2003)

    Google Scholar 

  4. Bonsma, P.S., Zickfeld, F.: Spanning trees with many leaves in graphs without diamonds and blossoms. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 531–543. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Dai, F., Wu, J.: An extended localized algorithm for connected dominating set formation in ad hoc wireless networks. IEEE Transactions on Parallel and Distributed Systems 15(10), 908–920 (2004)

    Article  Google Scholar 

  6. Daligault, J., Gutin, G., Kim, E.J., Yeo, A.: FPT Algorithms and Kernels for the Directed k-Leaf Problem. CoRR abs/0810.4946 (2008); also: J. Comput. System Sci. (2009), doi:10.1016/j.jcss.2009.06.005

    Google Scholar 

  7. Downey, R.G., Fellows, M.R.: Parameterized computational feasibility. In: Feasible Mathematics II, pp. 219–244. Birkhäuser, Boston (1995)

    Google Scholar 

  8. Estivill-Castro, V., Fellows, M.R., Langston, M.A., Rosamond, F.A.: FPT is P-time extremal structure I. In: Proc. of 1st ACiD, pp. 1–41. College Publications (2005)

    Google Scholar 

  9. Fellows, M.R., McCartin, C., Rosamond, F.A., Stege, U.: Coordinatized kernels and catalytic reductions: An improved FPT algorithm for max leaf spanning tree and other problems. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 240–251. Springer, Heidelberg (2000)

    Google Scholar 

  10. Fomin, F.V., Grandoni, F., Kratsch, D.: Solving connected dominating set faster than 2n. Algorithmica 52(2), 153–166 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. J. ACM 56(5) (2009)

    Google Scholar 

  12. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  13. Kneis, J., Langer, A., Rossmanith, P.: A new algorithm for finding trees with many leaves. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 270–281. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Liang, W.: Constructing minimum-energy broadcast trees in wireless ad hoc networks. In: Proc. of 3rd MOBIHOC, pp. 112–122 (2002)

    Google Scholar 

  15. Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  16. Park, M.A., Willson, J., Wang, C., Thai, M., Wu, W., Farago, A.: A dominating and absorbent set in a wireless ad-hoc network with different transmission ranges. In: Proc. of 8th MOBIHOC, pp. 22–31. ACM, New York (2007)

    Chapter  Google Scholar 

  17. Raman, V., Saurabh, S., Sikdar, S.: Improved exact exponential algorithms for vertex bipartization and other problems. In: Coppo, M., Lodi, E., Pinna, G.M. (eds.) ICTCS 2005. LNCS, vol. 3701, pp. 375–389. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Thai, M., Wang, F., Liu, D., Zhu, S., Du. Connected, D.Z.: dominating sets in wireless networks with different transmission ranges. IEEE Trans. Mobil. Comp. 6(7), 721–730 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernau, H. et al. (2009). An Exact Algorithm for the Maximum Leaf Spanning Tree Problem. In: Chen, J., Fomin, F.V. (eds) Parameterized and Exact Computation. IWPEC 2009. Lecture Notes in Computer Science, vol 5917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11269-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11269-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11268-3

  • Online ISBN: 978-3-642-11269-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics