Abstract
We examine a novel idea for the detection of Nash Equilibrium developed in [15] and apply it to Equilibrium Problems with Equilibrium Constraints (EPECs). EPECs are Nash games which uniquely feature players constrained by a condition governing equilibrium of a parametric system. By redefining the selection criteria used in evolutionary methods, EPECs can be solved using Evolutionary Multiobjective Optimization algorithms. We give a proposed algorithm (NDEMO) and illustrate it with numerical examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Červinka, M.: Hierarchical structures in equilibrium problems. PhD Thesis, Charles University, Prague, Czech Republic (2008)
Chellapilla, K., Fogel, D.: Evolving neural networks to play checkers without expert knowledge. IEEE Transactions on Neural Networks 10(6), 1382–1391 (1999)
Coello-Coello, C., Lamont, G.: Applications of multi-objective evolutionary algorithms. World Scientific, Singapore (2004)
Curzon Price, T.: Using co-evolutionary programming to simulate strategic behavior in markets. Journal of Evolutionary Economics 7(3), 219–254 (1997)
Deb, K.: Multi-objective optimization using evolutionary algorithms. John Wiley, Chichester (2001)
Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. 4OR 5(3), 173–210 (2007)
Gabay, D., Moulin, H.: On the uniqueness and stability of Nash-equilibria in non cooperative games. In: Bensoussan, A., et al. (eds.) Applied Stochastic Control in Econometrics and Management Science, pp. 271–293. North Holland, Amsterdam (1980)
Harker, P.T.: A variational inequality approach for the determination of Oligopolistic market equilibrium. Mathematical Programming 30(1), 105–111 (1984)
Hu, X., Ralph, D.: Using EPECs to model bilevel games in restructured electricity markets with locational prices. Operations Research 55(5), 809–827 (2007)
Judd, K.: Numerical methods in Economics. MIT Press, Cambridge (1998)
Karamardian, S.: Generalized complementarity problems. Journal of Optimization Theory and Applications 8(3), 161–168 (1971)
Koh, A.: Coevolutionary particle swarm algorithm for bi-level variational inequalities: applications to competition in highway transportation networks. In: Chiong, R., Dhakal, S. (eds.) Natural intelligence for scheduling, planning and packing problems, pp. 195–217. Springer, Berlin (2009)
Koh, A., Shepherd, S.: Tolling, collusion and equilibrium problems with equilibrium constraints. European Transport/Trasporti Europei (in press)
Kolstad, M., Mathisen, L.: Computing Cournot-Nash equilibrium. Operations Research 39(5), 739–748 (1991)
Lung, R.I., Dumitrescu, D.: Computing Nash equilibria by means of evolutionary computation. International Journal of Computers, Commmunications and Control III, 364–368 (2008)
Mordukhovich, B.S.: Optimization and equilibrium problems with equilibrium constraints. Omega 33(5), 379–384 (2005)
Mordukhovich, B.S.: Variational analysis and generalized Differentiation, II: Applications. Grundlehren der mathematischen wissenschaften, vol. 331. Springer, Berlin (2006)
Nash, J.: Equilibrium points in N-person games. Proceedings of the National Academy of Science USA 36(1), 48–49 (1950)
Pedroso, J.P.: Numerical solution of Nash and Stackelberg equilibria: an evolutionary approach. In: Proceedings of SEAL 1996, pp. 151–160 (1996)
Potter, M.A., De Jong, K.: A cooperative coevolutionary approach for function optimization. In: Proceedings of PPSN III, pp. 249–257. Springer, Berlin (1994)
Price, K., Storn, R., Lampinen, J.: Differential evolution: a practical approach to global optimization. Springer, Berlin (2005)
Protopapas, M., Kosmatopoulos, E.: Determination of sequential best replies in n-player games by genetic algorithms. International Journal of Applied Mathematics and Computer Science 5(1), 19–24 (2009)
Rajabioun, R., Atashpaz-Gargari, E., Lucas, C.: Colonial competitive algorithm as a tool for Nash equilibrium point achievement. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part II. LNCS, vol. 5073, pp. 680–695. Springer, Heidelberg (2008)
Rapoport, A., Chammah, A.: Prisoner’s Dilemma. University of Michigan Press, Ann Arbour (1965)
Razi, K., Shahri, S.H., Kian, A.R.: Finding Nash equilibrium point of nonlinear non-cooperative games using coevolutionary strategies. In: Proceedings of ISDA, pp. 875–882 (2007)
Robič, T., Filipič, B.: DEMO: differential evolution for multiobjective problems. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 520–533. Springer, Heidelberg (2005)
Sefrioui, M., Periaux, J.: Nash genetic algorithms: examples and applications. In: Proceedings of IEEE CEC, pp. 509–516 (2000)
Son, Y., Baldick, R.: Hybrid coevolutionary programming for Nash equilibrium search in games with local optima. IEEE Transactions on Evolutionary Computation 8(4), 305–315 (2004)
Su, C.: Equilibrium problems with equilibrium constraints: stationarities, algorithms and applications. PhD Thesis, Stanford University, California, USA (2005)
Wardrop, J.G.: Some theoretical aspects of road traffic research. Proceedings of Institution of Civil Engineers Part II 1(36), 325–378 (1952)
Webb, J.N.: Game theory: decisions, interaction and Evolution. Springer, London (2007)
Yang, H., Feng, X., Huang, H.: Private road competition and equilibrium with traffic equilibrium constraints. Journal of Advanced Transportation 43(1), 21–45 (2009)
Zubeita, L.: A network equilibrium model for oligopolistic competition in city bus services. Transportation Research Part B 32(6), 413–422 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Koh, A. (2010). Nash Dominance with Applications to Equilibrium Problems with Equilibrium Constraints. In: Gao, XZ., Gaspar-Cunha, A., Köppen, M., Schaefer, G., Wang, J. (eds) Soft Computing in Industrial Applications. Advances in Intelligent and Soft Computing, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11282-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-11282-9_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11281-2
Online ISBN: 978-3-642-11282-9
eBook Packages: EngineeringEngineering (R0)