Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 5945))

Abstract

The process through which disordered components spontaneously arrange themselves into patterns is called self-assembly. Molecular self-assembly describes the process by which molecules adopt a defined arrangement without external guidance (e.g. formation of membranes and protein complexes). These biological processes are essential to the functioning of cells. We investigate the usage of BlenX, a process calculi based programming language, for modelling molecular self-assembly of filaments, trees and rings. Moreover, we show how these structures can be used to model actin polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. http://www.cosbi.eu/downloads/attachment/Models.tar.gz

  2. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular biology of the cell (IV ed.). Garland science (2002)

    Google Scholar 

  3. Cardelli, L.: On process rate semantics. Theor. Comput. Sci. 391(3), 190–215 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cardelli, L., Caron, E., Gardner, P., Kahramanoğulları, O., Phillips, A.: A Process Model of Actin Polymerisation. Electronic Notes in Theoretical Computer Science 229(1), 127–144 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carlsson, A.E., Wear, M.A., Cooper, J.A.: End versus side branching by Arp2/3 complex. Biophysical journal 86(2), 1074–1081 (2004)

    Article  Google Scholar 

  6. Curien, P., Danos, V., Krivine, J., Zhang, M.: Computational self-assembly. Theor. Comput. Sci. 404(1-2), 61–75 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of cellular signalling. In: CONCUR, pp. 17–41 (2007)

    Google Scholar 

  8. Dematté, L., Larcher, R.: Custom visualization of biological structures: an application to BlenX complexes. Technical Report TR-16-2009 CoSBi (2009)

    Google Scholar 

  9. Dematté, L., Priami, C., Romanel, A.: The Beta Workbench: a computational tool to study the dynamics of biological systems. Brief. Bioinform. 9(5), 437–449 (2008)

    Article  Google Scholar 

  10. Dematté, L., Priami, C., Romanel, A.: The BlenX Language: A Tutorial. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 313–365. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Drexler, E.K.: Nanosystems: molecular machinery, manufacturing, and computation. Wiley, Chichester (1992)

    Google Scholar 

  12. Fass, J., Pak, C., Bamburg, J., Mogilner, A.: Stochastic simulation of actin dynamics reveals the role of annealing and fragmentation. Journal of theoretical biology 252(1), 173–183 (2008)

    Article  Google Scholar 

  13. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. Journal of Computational Biology 7(3), 601–620 (2000)

    Article  Google Scholar 

  14. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  15. Hasty, J., McMillen, D., Collins, J.J.: Engineered gene circuits. Nature 420(6912), 224–230 (2002)

    Article  Google Scholar 

  16. Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of theoretical biology 22(3), 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  18. Klavins, E.: Automatic synthesis of controllers for assembly and formation forming. In: International Conference on Robotics and Automation (2002)

    Google Scholar 

  19. Kuttler, C., Lhoussaine, C., Nebut, M.: Rule-based modeling of transcriptional attenuation at the tryptophan operon. In: Formal Methods in Molecular Biology (2009)

    Google Scholar 

  20. Lodish, H.F.: Molecular cell biology. W.H. Freeman, New York (2003)

    Google Scholar 

  21. Matzavinos, A., Othmer, H.G.: A stochastic analysis of actin polymerization in the presence of twinfilin and gelsolin. Journal of theoretical biology 249(4), 723–736 (2007)

    Article  MathSciNet  Google Scholar 

  22. Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge Universtity Press, Cambridge (1999)

    MATH  Google Scholar 

  23. Mogilner, A., Edelstein-Keshet, L.: Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophysical journal 83(3), 1237–1258 (2002)

    Article  Google Scholar 

  24. Nagpal, R.: Programmable self-assembly using biologically-inspired multiagent control. In: AAMAS 2002: Proceedings of the first international joint conference on Autonomous agents and multiagent systems, pp. 418–425 (2002)

    Google Scholar 

  25. Neumann, A.: Graphical gaussian shape models and their application to image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(3), 316–329 (2003)

    Article  Google Scholar 

  26. Pantaloni, D., Boujemaa, R., Didry, D., Gounon, P., Carlier, M.F.: The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins. Nature cell biology 2(7), 385–391 (2000)

    Article  Google Scholar 

  27. Phillips, A., Cardelli, L.: Efficient, Correct Simulation of Biological Processes in the Stochastic Pi-calculus. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 184–199. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  28. Prandi, D., Priami, C., Quaglia, P.: Communicating by compatibility. JLAP 75, 167 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Prandi, D., Zunino, R.: Computing by Complexes. Technical Report TR-11-2009 CoSBi (2009)

    Google Scholar 

  30. Priami, C.: Stochastic π-calculus. The Computer Journal 38(6), 578–589 (1995)

    Article  Google Scholar 

  31. Priami, C., Quaglia, P., Romanel, A.: BlenX Static and Dynamic Semantics. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 37–52. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  32. Priami, C., Regev, A., Shapiro, E.Y., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inf. Process. Lett. 80(1), 25–31 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Romanel, A., Priami, C.: On the decidability and complexity of the structural congruence for beta-binders. Theor. Comput. Sci. 404(1-2), 156–169 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  35. Stock, A.M., Goudreau, P.N., Robinson, V.L.: Two-component signal transduction. Annu. Rev. Biochem. 69, 183–215 (2000)

    Article  Google Scholar 

  36. Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Programming biomolecular self-assembly pathways. Nature 451(318-322) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Larcher, R., Priami, C., Romanel, A. (2010). Modelling Self-assembly in BlenX . In: Priami, C., Breitling, R., Gilbert, D., Heiner, M., Uhrmacher, A.M. (eds) Transactions on Computational Systems Biology XII. Lecture Notes in Computer Science(), vol 5945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11712-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11712-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11711-4

  • Online ISBN: 978-3-642-11712-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics