Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Analysis of an Implicitly Restarted Simpler GMRES Variant of Augmented GMRES

  • Conference paper
Computational Science and Its Applications – ICCSA 2010 (ICCSA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6017))

Included in the following conference series:

  • 1237 Accesses

Abstract

We analyze a Simpler GMRES variant of augmented GMRES with implicit restarting for solving nonsymmetric linear systems with small eigenvalues. The use of a shifted Arnoldi process in the Simpler GMRES variant for computing Arnoldi basis vectors has the advantage of not requiring an upper Hessenberg factorization and this often leads to cheaper implementations. However the use of a non-orthogonal basis has been identified as a potential weakness of the Simpler GMRES algorithm. Augmented variants of GMRES also employ non-orthogonal basis vectors since approximate eigenvectors are added to the Arnoldi basis vectors at the end of a cycle and in case the approximate eigenvectors are ill-conditioned, this may have an adverse effect on the accuracy of the computed solution. This problem is the focus of our paper where we analyze the shifted Arnoldi implementation of augmented GMRES with implicit restarting and compare its performance and accuracy with that based on the Arnoldi process. We show that augmented Simpler GMRES with implicit restarting involves a transformation matrix which leads to an efficient implementation and we theoretically show that our implementation generates the same subspace as the corresponding GMRES variant. We describe various numerical tests that indicate that in cases where both variants are successful, our method based on Simpler GMRES keeps comparable accuracy as the augmented GMRES variant. Also, the Simpler GMRES variants perform better in terms of computational time required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boojhawon, R., Bhuruth, M.: Restarted Simpler GMRES augmented with harmonic Ritz vectors. Future Generation Computer Systems 20, 389–397 (2004)

    Article  Google Scholar 

  2. Boojhawon, R., Bhuruth, M.: Implementing GMRES with Deflated Restarting via the shifted Arnoldi Process. In: Proceedings of the 2006 Conference on Computational and Mathematical Methods on Science and Engineering, pp. 133–152 (2006)

    Google Scholar 

  3. Drkosova, J., Greenbaum, A., Rozloznik, M., Strakos, Z.: Numerical stability of GMRES. BIT 35, 309–330 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Goossens, S., Roose, D.: Ritz and harmonic Ritz values and the convergence of FOM and GMRES. Numer. Lin. Alg. Appl. 6, 281–293 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Greenbaum, A., Rozloznik, M., Strakos, Z.: Numerical behaviour of modified Gram-Schmidt GMRES implementation. BIT 37, 709–719 (1997)

    Article  MathSciNet  Google Scholar 

  6. Higham, N.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    MATH  Google Scholar 

  7. Jiranek, P., Rozloznik, M., Gutknecht, M.: How to make Simpler GMRES and GCR more Stable. SIAM J. Matrix Anal. Appl. 30(4), 1483–1499 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Liesen, J., Rozloznik, M., Strakos, Z.: Least squares residuals and minimal residual methods. SIAM J. Sci. Comput. 23, 1503–1525 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Morgan, R.: A restarted GMRES method augmented with eigenvectors. SIAM J. Matrix Anal. Appl. 16(4), 1154–1171 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Morgan, R.: Implicitly restarted GMRES and Arnoldi methods for nonsymmetric systems of equations. SIAM J. Matrix Anal. Appl. 21(4), 1112–1135 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Morgan, R.B.: GMRES with deflated restarting. SIAM J. Sci. Comp. 24, 20–37 (2002)

    Article  MATH  Google Scholar 

  12. Parlett, B.N., Le, J.: Forward instability of tridiagonal QR. SIAM J. Matrix Anal. Appl. 14, 279–316 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rozloznik, M.: Numerical Stability of the GMRES Method. PhD thesis, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague (1996)

    Google Scholar 

  14. Rozloznik, M., Strakos, Z.: Variants of the residual minimizing Krylov space methods. In: Proceedings of the XI th Summer School Software and Algorithms of Numerical Mathematics, pp. 208–225 (1995)

    Google Scholar 

  15. Saad, Y., Schultz, M.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 865–869 (1986)

    MathSciNet  Google Scholar 

  16. Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13, 357–385 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Walker, H., Zhou, L.: A Simpler GMRES. Numer. Lin. Alg. Appl. 1, 571–581 (1992)

    Article  MathSciNet  Google Scholar 

  18. Wu, K., Simon, H.: Thick-restart Lanczos method for large symmetric eigenvalue problems. SIAM J. Matrix Anal. Appl. 22, 602–616 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boojhawon, R., Tangman, D.Y., Dookhitram, K., Bhuruth, M. (2010). Analysis of an Implicitly Restarted Simpler GMRES Variant of Augmented GMRES. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds) Computational Science and Its Applications – ICCSA 2010. ICCSA 2010. Lecture Notes in Computer Science, vol 6017. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12165-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12165-4_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12164-7

  • Online ISBN: 978-3-642-12165-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics