Abstract
An evolutionary circle detection method based on a novel Chaotic Hybrid Algorithm (CHA) is proposed. The method combines the strengths of particle swarm optimization, genetic algorithms and chaotic dynamics, and involves the standard velocity and position updating rules of PSO with the ideas of GA selection, crossover and mutation. In addition, the notion of species is introduced into the proposed CHA to enhance its performance in solving multimodal problems. The effectiveness of the Species based Chaotic Hybrid Algorithm (SCHA) is proven through simulations and benchmarking, and finally, it is successfully applied to solve circle detection problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angeline, P.: Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 601–610. Springer, Heidelberg (1998)
Eberhart, R., Shi, Y.: Comparison between Genetic Algorithms and Particle Swarm Optimization. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds.) EP 1998. LNCS, vol. 1447, pp. 611–616. Springer, Heidelberg (1998)
Settles, M., Soule, T.: Breeding Swarms: a GA/PSO Hybrid. In: The Genetic and Evolutionary Computation Conference (GECCO 2005), pp. 161–168. ACM, New York (2005)
Wong, K.W., Kwok, S.H., Law, W.S.: A Fast Image Encryption Scheme Based on Chaotic Standard Map. Phys. Lett. A. 372, 2645–2652 (2008)
Lu, Z., Shieh, L.S., Chen, G.R.: On Robust Control of Uncertain Chaotic Systems: a Sliding Mode Synthesis via Chaotic Optimization. Chaos, Solitons Fractals 18, 819–827 (2003)
Li, B., Jiang, W.S.: Optimizing Complex Functions by Chaos Search. Int. J. Cybern. Syst. 29(4), 409–419 (1998)
Petalas, Y.G., Antonopoulos, C.G., Bountis, T.C., Vrahatis, M.N.: Detecting Resonances in Conservative Maps Using Evolutionary Algorithms. Phys. Lett. A 373, 334–341 (2009)
Goldberg, D.E., Richardson, J.: Genetic Algorithms with Sharing for Multimodal Function Optimization. In: Proc. 2nd International Conference on Genetic Algorithms (ICGA), pp. 41–49 (1987)
Parrott, D., Li, X.: Locating and Tracking Multiple Dynamic Optima by a Particle Swarm Model Using Speciation. IEEE Trans. Evol. Comput. 10(4), 440–457 (2006)
Lam, W., Yuen, S.: Efficient Techniques for Circle Detection Using Hypothesis Filtering and Hough Transform. IEE Proc. Visual Image Signal Proc. 143(5), 292–300 (1996)
Rosin, P.L., Nyongesa, H.O.: Combining Evolutionary, Connectionist, and Fuzzy Classification Algorithms for Shape Analysis. In: Cagnoni, S., et al. (eds.) EvoWorkshops 2000. LNCS, vol. 1803, pp. 87–96. Springer, Heidelberg (2000)
Victor, A.R., Carlos, H.G.C., Arturo, P.G., Raul, E.S.Y.: Circle Detection on Images Using Genetic Algorithms. Pattern Recognit. Lett. 27(6), 652–657 (2006)
Zhang, H., Shen, J.H., Zhang, T.N., Li, Y.: An Improved Chaotic Particle Swarm Optimization and Its Application in Investment. In: Proc. International Symposium on Computational Intelligence and Design, vol. 1, pp. 124–128 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wu, CH., Dong, N., Ip, WH., Chan, CY., Yung, KL., Chen, ZQ. (2010). Chaotic Hybrid Algorithm and Its Application in Circle Detection. In: Di Chio, C., et al. Applications of Evolutionary Computation. EvoApplications 2010. Lecture Notes in Computer Science, vol 6024. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12239-2_31
Download citation
DOI: https://doi.org/10.1007/978-3-642-12239-2_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12238-5
Online ISBN: 978-3-642-12239-2
eBook Packages: Computer ScienceComputer Science (R0)