Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Chaotic Hybrid Algorithm and Its Application in Circle Detection

  • Conference paper
Applications of Evolutionary Computation (EvoApplications 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6024))

Included in the following conference series:

  • 2715 Accesses

Abstract

An evolutionary circle detection method based on a novel Chaotic Hybrid Algorithm (CHA) is proposed. The method combines the strengths of particle swarm optimization, genetic algorithms and chaotic dynamics, and involves the standard velocity and position updating rules of PSO with the ideas of GA selection, crossover and mutation. In addition, the notion of species is introduced into the proposed CHA to enhance its performance in solving multimodal problems. The effectiveness of the Species based Chaotic Hybrid Algorithm (SCHA) is proven through simulations and benchmarking, and finally, it is successfully applied to solve circle detection problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angeline, P.: Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 601–610. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Eberhart, R., Shi, Y.: Comparison between Genetic Algorithms and Particle Swarm Optimization. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds.) EP 1998. LNCS, vol. 1447, pp. 611–616. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Settles, M., Soule, T.: Breeding Swarms: a GA/PSO Hybrid. In: The Genetic and Evolutionary Computation Conference (GECCO 2005), pp. 161–168. ACM, New York (2005)

    Chapter  Google Scholar 

  4. Wong, K.W., Kwok, S.H., Law, W.S.: A Fast Image Encryption Scheme Based on Chaotic Standard Map. Phys. Lett. A. 372, 2645–2652 (2008)

    Article  Google Scholar 

  5. Lu, Z., Shieh, L.S., Chen, G.R.: On Robust Control of Uncertain Chaotic Systems: a Sliding Mode Synthesis via Chaotic Optimization. Chaos, Solitons Fractals 18, 819–827 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Li, B., Jiang, W.S.: Optimizing Complex Functions by Chaos Search. Int. J. Cybern. Syst. 29(4), 409–419 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Petalas, Y.G., Antonopoulos, C.G., Bountis, T.C., Vrahatis, M.N.: Detecting Resonances in Conservative Maps Using Evolutionary Algorithms. Phys. Lett. A 373, 334–341 (2009)

    Article  Google Scholar 

  8. Goldberg, D.E., Richardson, J.: Genetic Algorithms with Sharing for Multimodal Function Optimization. In: Proc. 2nd International Conference on Genetic Algorithms (ICGA), pp. 41–49 (1987)

    Google Scholar 

  9. Parrott, D., Li, X.: Locating and Tracking Multiple Dynamic Optima by a Particle Swarm Model Using Speciation. IEEE Trans. Evol. Comput. 10(4), 440–457 (2006)

    Article  Google Scholar 

  10. Lam, W., Yuen, S.: Efficient Techniques for Circle Detection Using Hypothesis Filtering and Hough Transform. IEE Proc. Visual Image Signal Proc. 143(5), 292–300 (1996)

    Article  Google Scholar 

  11. Rosin, P.L., Nyongesa, H.O.: Combining Evolutionary, Connectionist, and Fuzzy Classification Algorithms for Shape Analysis. In: Cagnoni, S., et al. (eds.) EvoWorkshops 2000. LNCS, vol. 1803, pp. 87–96. Springer, Heidelberg (2000)

    Google Scholar 

  12. Victor, A.R., Carlos, H.G.C., Arturo, P.G., Raul, E.S.Y.: Circle Detection on Images Using Genetic Algorithms. Pattern Recognit. Lett. 27(6), 652–657 (2006)

    Article  Google Scholar 

  13. Zhang, H., Shen, J.H., Zhang, T.N., Li, Y.: An Improved Chaotic Particle Swarm Optimization and Its Application in Investment. In: Proc. International Symposium on Computational Intelligence and Design, vol. 1, pp. 124–128 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, CH., Dong, N., Ip, WH., Chan, CY., Yung, KL., Chen, ZQ. (2010). Chaotic Hybrid Algorithm and Its Application in Circle Detection. In: Di Chio, C., et al. Applications of Evolutionary Computation. EvoApplications 2010. Lecture Notes in Computer Science, vol 6024. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12239-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12239-2_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12238-5

  • Online ISBN: 978-3-642-12239-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics