Abstract
Trading-rule representation is an important factor to consider when designing a quantitative trading system. This study implements a trading strategy as a rule-based policy. The result is an intuitive human-readable format which allows for seamless integration of domain knowledge. The components of a policy are specified and represented as a set of rewrite rules in a context-free grammar. These rewrite rules define how the components can be legally assembled. Thus, strategies derived from the grammar are well-formed, domain-specific, solutions. A grammar-based Evolutionary Algorithm, Grammatical Evolution (GE), is then employed to automatically evolve intra-day trading strategies for the U.S. Stock Market. The GE methodology managed to discover profitable rules with realistic transaction costs included. The paper concludes with a number of suggestions for future work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brabazon, A., O’Neill, M.: Evolving technical trading rules for spot foreign-exchange markets using grammatical evolution. Computational Management Science 1(3), 311–327 (2004)
Brabazon, A., O’Neill, M.: Intra-day trading using grammatical evolution. In: Brabazon, A., O’Neill, M. (eds.) Biologically Inspired Algorithms for Financial Modelling, pp. 203–210. Springer, Berlin (2006)
Dempsey, I., O’Neill, M., Brabazon, A.: Grammatical constant creation. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 447–458. Springer, Heidelberg (2004)
Dempsey, I., O’Neill, M., Brabazon, A.: Adaptive trading with grammatical evolution. In: Proceedings of the 2006 IEEE Congress on Evolutionary Computation, pp. 9137–9142. IEEE Press, Los Alamitos (2006), http://ncra.ucd.ie/papers/cec2006_adaptiveTrading.ps (Vancouver July 6-21, 2006)
Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Kluwer Academic Publishers, Dordrecht (2002)
Istvan, S., András, L.: Learning to play using low-complexity rule-based policies: Illustrations through ms. pac-man. J. Artif. Intell. Res. (JAIR) 30, 659–684 (2007), http://www.jair.org/media/2368/live-2368-3623-jair.pdf
Lo, A.W.: The adaptive markets hypothesis: Market efficiency from an evolutionary perspective. Journal of Portfolio Management (2004) (forthcoming)
O’Neill, M., Ryan, C.: Grammatical Evolution. Kluwer, Dordrecht (2003)
Saks, P., Maringer, D.: Evolutionary Money Management. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 162–171. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bradley, R.G., Brabazon, A., O’Neill, M. (2010). Evolving Trading Rule-Based Policies. In: Di Chio, C., et al. Applications of Evolutionary Computation. EvoApplications 2010. Lecture Notes in Computer Science, vol 6025. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12242-2_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-12242-2_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12241-5
Online ISBN: 978-3-642-12242-2
eBook Packages: Computer ScienceComputer Science (R0)