Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automatic Parameter Tuning with Metaheuristics of the AODV Routing Protocol for Vehicular Ad-Hoc Networks

  • Conference paper
Applications of Evolutionary Computation (EvoApplications 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6025))

Included in the following conference series:

  • 1976 Accesses

Abstract

Communication protocol tuning can yield significant gains in energy efficiency, resource requirements, and the overall network performance, all of which is of particular importance in vehicular ad-hoc networks (VANETs). In this kind of networks, the lack of a predefined infrastructure as well as the high level of dynamism usually provoke problems such as the congestion of intermediate nodes, the appearance of jitters, and the disconnection of links. Therefore, it is crucial to make an optimal configuration of the routing protocols previously to the network deployment. In this work, we address the optimal automatic parameter tuning of a well-known routing protocol: Ad Hoc On Demand Distance Vector (AODV). For this task, we have used and compared five optimization techniques: PSO, DE, GA, ES, and SA. For our tests, a urban VANET scenario has been defined by following realistic mobility and data flow models. The experiments reveal that the produced configurations of AODV significantly improve their performance over using default parameters, as well as compared against other well-known routing protocols. Additionally, we found that PSO outperforms all the compared algorithms in efficiency and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Härri, J., Filali, F., Bonnet, C.: Mobility Models for Vehicular Ad Hoc Networks: A Survey and Taxonomy. Research Report RR-06-168 (March 2007)

    Google Scholar 

  2. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys 35(3), 268–308 (2003)

    Article  Google Scholar 

  3. Vanhatupa, T., Hännikäinen, M., Hämäläinen, T.: Optimization of mesh WLAN channel assignment with a configurable genetic algorithm. In: WiMeshNets 2006 (2006)

    Google Scholar 

  4. Alba, E., et al.: A Cellular MOGA for Optimal Broadcasting Strategy in Metropolitan MANETs. Computer Communications 30(4), 685–697 (2007)

    Article  Google Scholar 

  5. Di Caro, G.A., Ducatelle, F., Gambardella, L.M.: AntHocNet: An Adaptive Nature-Inspired Algorithm for Routing in Mobile Ad Hoc Networks. European Transactions on Telecommunications 16(5), 443–455 (2005)

    Article  Google Scholar 

  6. Chiang, F., Chaczko, Z., Agbinya, J., Braun, R.: Ant-based topology convergence algorithms for resource management in VANETs. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 992–1000. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Huang, C., Chuang, Y., Hu, K.: Using particle swarm optimization for QoS in ad-hoc multicast. Eng. Appl. of Artificial Intelligence (2009) (in Press)

    Google Scholar 

  8. Perkins, C.E., Belding-Royer, E.M., Das, S.: Ad Hoc on Demand Distance Vector (AODV) Routing. IETF RFC 3561 (2003), http://moment.cs.ucsb.edu/pub/rfc3561.txt

  9. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: IEEE International Conference on Neural Networks, November 1995, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  10. Price, K.V., Storn, R., Lampinen, J.: Differential Evolution: A practical Approach to Global Optimization. Springer, London (2005)

    MATH  Google Scholar 

  11. The Network Simulator Project - Ns-2, http://www.isi.edu/nsnam/ns/

  12. Toh, C.: Ad Hoc Wireless Networks: Protocols and Systems. Prentice Hall PTR, Upper Saddle River (2001)

    Google Scholar 

  13. Perkins, C.E., Royer, E.M.: Adhoc On Demand Distance Vector Routing. In: 2nd IEEE Workshop on MCSA, Metz, France, pp. 90–100 (1999)

    Google Scholar 

  14. Perkins, C.E., Bhagwat, P.: Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers. In: ACM SIGCOMM 1994, London, UK, pp. 234–244 (1994)

    Google Scholar 

  15. Johnson, D.B., Maltz, D.A., Broch, J.: DSR: the dynamic source routing protocol for multihop wireless ad hoc networks. In: Ad hoc Networking. Addison-Wesley Longman Publishing Co., Inc., Boston (2001)

    Google Scholar 

  16. Naumov, V., Baumann, R., Gross, T.: An evaluation of inter-vehicle ad hoc networks based on realistic vehicular traces. In: Proceedings of the 7th ACM MobiHoc, pp. 108–119. ACM, New York (2006)

    Google Scholar 

  17. Krajzewicz, D., Bonert, M., Wagner, P.: The open source traffic simulation package SUMO. In: RoboCup 2006, Bremen, Germany, pp. 1–10 (2006)

    Google Scholar 

  18. Alba, E., Luque, G., García-Nieto, J., Ordonez, G., Leguizamón, G.: MALLBA: A software library to design efficient optimisation algorithms. Int. Journal of Innovative Computing and Applications (IJICA) 1(1), 74–85 (2007)

    Article  Google Scholar 

  19. Wilcox, R.: New statistical procedures for the social sciences, Hillsdale (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

García-Nieto, J., Alba, E. (2010). Automatic Parameter Tuning with Metaheuristics of the AODV Routing Protocol for Vehicular Ad-Hoc Networks. In: Di Chio, C., et al. Applications of Evolutionary Computation. EvoApplications 2010. Lecture Notes in Computer Science, vol 6025. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12242-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12242-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12241-5

  • Online ISBN: 978-3-642-12242-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics