Abstract
Word clouds are a summarised representation of a document’s text, similar to tag clouds which summarise the tags assigned to documents. Word clouds are similar to language models in the sense that they represent a document by its word distribution. In this paper we investigate the differences between word cloud and language modelling approaches, and specifically whether effective language modelling techniques also improve word clouds. We evaluate the quality of the language model using a system evaluation test bed, and evaluate the quality of the resulting word cloud with a user study. Our experiments show that different language modelling techniques can be applied to improve a standard word cloud that uses a TF weighting scheme in combination with stopword removal. Including bigrams in the word clouds and a parsimonious term weighting scheme are the most effective in both the system evaluation and the user study.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bateman, S., Gutwin, C., Nacenta, M.: Seeing things in the clouds: the effect of visual features on tag cloud selections. In: Proceedings HT 2008, pp. 193–202. ACM, New York (2008)
Brooks, C.H., Montanez, N.: Improved annotation of the blogosphere via autotagging and hierarchical clustering. In: Proceedings WWW 2006, pp. 625–632. ACM, New York (2006)
Buckley, C., Robertson, S.: Relevance feedback track overview: TREC 2008. In: The Seventeenth Text REtrieval Conference (TREC 2008) Notebook (2008)
Coupland, D.: Microserfs. HarperCollins, Toronto (1995)
Dredze, M., Wallach, H.M., Puller, D., Pereira, F.: Generating summary keywords for emails using topics. In: Proceedings of the 2008 International Conference on Intelligent User Interfaces (2008)
Halvey, M.J., Keane, M.T.: An assessment of tag presentation techniques. In: Proceedings WWW 2007, pp. 1313–1314. ACM, New York (2007)
Harman, D.: How effective is suffixing? Journal of the American Society for Information Science 42, 7–15 (1991)
Hiemstra, D., Robertson, S., Zaragoza, H.: Parsimonious language models for information retrieval. In: Proceedings SIGIR 2004, pp. 178–185. ACM Press, New York (2004)
Kuo, B.Y.-L., Hentrich, T., Good, B.M., Wilkinson, M.D.: Tag clouds for summarizing web search results. In: Proceedings WWW 2007, pp. 1203–1204. ACM, New York (2007)
Lambiotte, R., Ausloos, M.: Collaborative tagging as a tripartite network. In: Computational Science – ICCS 2006, pp. 1114–1117 (2006)
LibraryThing (2009), http://www.librarything.com/
Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)
ManyEyes (2009), http://manyeyes.alphaworks.ibm.com/manyeyes/page/Tag_Cloud.html
Maron, M.E., Kuhns, J.L.: On relevance, probabilistic indexing and information retrieval. Journal of the ACM 7(3), 216–244 (1960)
Metzler, D., Croft, W.B.: Combining the language model and inference network approaches to retrieval. Information Processing & Management 40(5), 735–750 (2004)
Ponte, J., Croft, W.: A language modeling approach to information retrieval. In: SIGIR 1998, pp. 275–281 (1998)
Porter, M.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
Rivadeneira, A.W., Gruen, D.M., Muller, M.J., Millen, D.R.: Getting our head in the clouds: toward evaluation studies of tagclouds. In: Proceedings CHI 2007, pp. 995–998. ACM, New York (2007)
Ruthven, I.: Re-examining the potential effectiveness of interactive query expansion. In: SIGIR 2003, pp. 213–220. ACM, New York (2003)
Spärck Jones, K.: A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation 28, 11–21 (1972)
Strohman, T., Metzler, D., Turtle, H., Croft, W.B.: Indri: a language-model based search engine for complex queries. In: Proceedings of the International Conference on Intelligent Analysis (2005)
Wordle (2009), http://wordle.net
Zhai, C., Lafferty, J.: Model-based feedback in the language modeling approach to information retrieval. In: Proceedings CIKM 2001, pp. 403–410. ACM, New York (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kaptein, R., Hiemstra, D., Kamps, J. (2010). How Different Are Language Models andWord Clouds?. In: Gurrin, C., et al. Advances in Information Retrieval. ECIR 2010. Lecture Notes in Computer Science, vol 5993. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12275-0_48
Download citation
DOI: https://doi.org/10.1007/978-3-642-12275-0_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12274-3
Online ISBN: 978-3-642-12275-0
eBook Packages: Computer ScienceComputer Science (R0)