Abstract
This study assessed participant performance of an outdoor navigation task using a mobile audio augmented reality system. Several quantitative performance measures and one subjective measure were used to compare the perceptual efficacy of Ambisonic and VBAP binaural rendering techniques, and a range of head-turn latencies. The study extends existing indoors research on the effects of head-turn latency for seated listeners.
The pilot experiment found that a source capture radius of 2 meters significantly affected the sole participant’s navigation distance efficiency compared to other radii. The main experiment, using 8 participants, found that render method significantly affected all performance measures except subjective stability rating, while head-turn latency only affected mean track curvature and subjective stability. Results also showed an interaction in which the choice of rendering method mitigated or potentiated the effects of head-turn latency on perceived source stability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Algazi, V.R., Duda, R.O., Thompson, D.M., Avendano, C.: The CIPIC HRTF Database. In: Proc. IEEE Workshop on Applications of Signal Processing to Audio and Electroacoustics, October 21-24, 2001, pp. 99–102. Mohonk Mountain House, New Paltz (2001)
Benjamin, E., Lee, R., Aficionado, L., Heller, A.: Localization in Horizontal-Only Ambisonic Systems. 131st AES Convention, preprint 6967, 5–8 (2006)
Loomis, J., Hebert, C., Cicinelli, J.: Active localization of virtual sounds. J. Acoust. Soc. Am. 88(4), 1757–1764 (1990)
Mariette, N.: Perceptual Evaluation of Personal, Location Aware Spatial Audio. Ph.D. thesis, School of Computer Science and Engineering, University of New South Wales, [in examination]) (2009)
Mariette, N.: A Novel Sound Localization Experiment for Mobile Audio Augmented Reality Applications. in: al, Z.P.e. (ed.) 16th Int. Conf. on Artificial Reality and Tele-existence. pp. 132–142, Springer, Berlin/Heidelberg, Hangzhou, China (2006)
Mariette, N.: Mitigation of binaural front-back confusions by body motion in audio augmented reality. In: Int. Conf. on Auditory Display, Montreal, Canada, June 26-29 (2007)
McDonald, J.: Data Transformations (2007), http://udel.edu/~mcdonald/stattransform.html
Miller, J.D., Anderson, M.R., Wenzel, E.M., McClain, B.U.: Latency measurement of a real-time virtual acoustic environment rendering system. In: Int. Conf. on Auditory Display, Boston, MA, USA, 6-9 July (2003)
Puckette, M.: Pure Data. In: Int. Computer Music Conf, pp. 269–272. Int. Computer Music Association, San Francisco (1996)
Pulkki, V.: Virtual Sound Source Positioning Using Vector Base Amplitude Panning. J. Audio Eng. Soc. 46(6), 456–466 (1997)
Strauss, H., Buchholz, J.: Comparison of Virtual Sound Source Positioning with Amplitude Panning and Ambisonic Reproduction. In: The 137th regular Meeting of the Acoustical Society of America (1999)
Walker, B.N., Lindsay, J.: Auditory Navigation Performance is Affected by Waypoint Capture Radius. In: The 10th Int. Conf. on Auditory Display, Sydney, Australia, July 6-9 (2004)
Weisstein, E.W.: Curvature (2007), http://mathworld.wolfram.com/Curvature.html
Wright, M., Freed, A.: Open Sound Control: A New Protocol for Communicating with Sound Synthesizers. In: Int. Computer Music Conf., Thessaloniki, Greece, September 25-30 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mariette, N. (2010). Navigation Performance Effects of Render Method and Head-Turn Latency in Mobile Audio Augmented Reality. In: Ystad, S., Aramaki, M., Kronland-Martinet, R., Jensen, K. (eds) Auditory Display. CMMR ICAD 2009 2009. Lecture Notes in Computer Science, vol 5954. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12439-6_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-12439-6_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12438-9
Online ISBN: 978-3-642-12439-6
eBook Packages: Computer ScienceComputer Science (R0)