Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Parameterized Route to Exact Puzzles: Breaking the 2n-Barrier for Irredundance

(Extended Abstract)

  • Conference paper
Algorithms and Complexity (CIAC 2010)

Abstract

The lower and the upper irredundance numbers of a graph G, denoted ir(G) and IR(G) respectively, are conceptually linked to domination and independence numbers and have numerous relations to other graph parameters. It is a long-standing open question whether determining these numbers for a graph G on n vertices admits exact algorithms running in time less than the trivial Ω(2n) enumeration barrier. We solve this open problem by devising parameterized algorithms for the duals of the natural parameterizations of the problems with running times faster than \(\mathcal{O}^*(4^{k})\). For example, we present an algorithm running in time \(\mathcal{O}^*(3.069^{k}))\) for determining whether IR(G) is at least n − k. Although the corresponding problem has been shown to be in FPT by kernelization techniques, this paper offers the first parameterized algorithms with an exponential dependency on the parameter in the running time. Furthermore, these seem to be the first examples of a parameterized approach leading to a solution to a problem in exponential time algorithmics where the natural interpretation as exact exponential-time algorithms fails.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Favaron, O., Haynes, T.W., Hedetniemi, S.T., Henning, M.A., Knisley, D.J.: Total irredundance in graphs. Discrete Mathematics 256(1-2), 115–127 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allan, R.B., Laskar, R.: On domination and independent domination numbers of a graph. Discrete Mathematics 23(2), 73–76 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Favaron, O.: Two relations between the parameters of independence and irredundance. Discrete Mathematics 70(1), 17–20 (1988)

    Article  MathSciNet  Google Scholar 

  4. Fellows, M.R., Fricke, G., Hedetniemi, S.T., Jacobs, D.P.: The private neighbor cube. SIAM J. Discrete Math. 7(1), 41–47 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hedetniemi, S.T., Laskar, R., Pfaff, J.: Irredundance in graphs: a survey. Congr. Numer. 48, 183–193 (1985)

    MathSciNet  MATH  Google Scholar 

  6. Bollobás, B., Cockayne, E.J.: Graph-theoretic parameters concerning domination, independence, and irredundance. J. Graph Theory 3, 241–250 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockayne, E.J., Grobler, P.J.P., Hedetniemi, S.T., McRae, A.A.: What makes an irredundant set maximal? J. Combin. Math. Combin. Comput. 25, 213–224 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Chang, M.S., Nagavamsi, P., Rangan, C.P.: Weighted irredundance of interval graphs. Information Processing Letters 66, 65–70 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockayne, E.J., Hedetniemi, S.T., Miller, D.J.: Properties of hereditary hypergraphs and middle graphs. Canad. Math. Bull. 21(4), 461–468 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. In: Monographs and Textbooks in Pure and Applied Mathematics, vol. 208. Marcel Dekker, New York (1998)

    Google Scholar 

  11. Colbourn, C.J., Proskurowski, A.: Concurrent transmissions in broadcast networks. In: Paredaens, J. (ed.) ICALP 1984. LNCS, vol. 172, pp. 128–136. Springer, Heidelberg (1984)

    Chapter  Google Scholar 

  12. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  13. Raman, V., Saurabh, S.: Parameterized algorithms for feedback set problems and their duals in tournaments. Theoretical Computer Science 351(3), 446–458 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Downey, R.G., Fellows, M.R., Raman, V.: The complexity of irredundant sets parameterized by size. Discrete Applied Mathematics 100, 155–167 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. Journal of the ACM 56(5) (2009)

    Google Scholar 

  16. Fomin, F.V., Iwama, K., Kratsch, D., Kaski, P., Koivisto, M., Kowalik, L., Okamoto, Y., van Rooij, J., Williams, R.: 08431 Open problems – Moderately exponential time algorithms. In: Moderately Exponential Time Algorithms. Dagstuhl Seminar Proceedings, vol. 08431 (2008)

    Google Scholar 

  17. Cygan, M., Pilipczuk, M., Wojtaszczyk, J.O.: Irredundant set faster than O(2n). In: These proceedings

    Google Scholar 

  18. Chor, B., Fellows, M., Juedes, D.: Linear kernels in linear time, or how to save k colors in O(n 2) steps. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 257–269. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Fellows, M.R.: Blow-ups, win/win’s, and crown rules: Some new directions in FPT. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 1–12. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Telle, J.A.: Complexity of domination-type problems in graphs. Nordic. J. of Comp. 1, 157–171 (1994)

    MathSciNet  Google Scholar 

  21. Telle, J.A.: Vertex Partitioning Problems: Characterization, Complexity and Algorithms on Partial k-Trees. PhD thesis, Department of Computer Science, University of Oregon, USA (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Binkele-Raible, D. et al. (2010). A Parameterized Route to Exact Puzzles: Breaking the 2n-Barrier for Irredundance. In: Calamoneri, T., Diaz, J. (eds) Algorithms and Complexity. CIAC 2010. Lecture Notes in Computer Science, vol 6078. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13073-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13073-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13072-4

  • Online ISBN: 978-3-642-13073-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics