Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Process Algebras for Collective Dynamics

(Extended Abstract)

  • Conference paper
Mathematics of Program Construction (MPC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6120))

Included in the following conference series:

  • 573 Accesses

Abstract

Stochastic process algebras extend classical process algebras such as CCS [1] and CSP [2] with quantified notions of time and probability. Examples include PEPA [3], EMPA [4], MoDeST [5] and IMC [6]. These formalisms retain the compositional structure of classical process algebras and the additional information captured within the model allows analysis to investigate additional properties such as dynamic behaviour and resource usage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)

    Google Scholar 

  2. Hoare, C.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs (1985)

    MATH  Google Scholar 

  3. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  4. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: a theory of concurrent processes with nondeterminism, priorities, probabilities and time. TCS 202, 1–54 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. D’Argenio, P., Hermanns, H., Katoen, J.P., Klaren, R.: Modest — a modelling and description language for stochastic timed systems. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, p. 87. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428, p. 57. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  7. Hillston, J.: Fluid flow approximation of PEPA models. In: Proc. of the 2nd International Conference on Quantitative Evaluation of Systems (2005)

    Google Scholar 

  8. Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process algebra models. IEEE Transactions on Software Engineering (to appear, 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hillston, J. (2010). Process Algebras for Collective Dynamics. In: Bolduc, C., Desharnais, J., Ktari, B. (eds) Mathematics of Program Construction. MPC 2010. Lecture Notes in Computer Science, vol 6120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13321-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13321-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13320-6

  • Online ISBN: 978-3-642-13321-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics