Abstract
Actively reconfigurable chassis enable planetary mobile robots to access more varieties of terrain. While typical approaches for exploiting such mechanisms reply on feedback control, it is beneficial to consider actively controlled elements at planning time rather than during motion execution. In this paper we present an approach for extending work in model-predictive trajectory generation to actively reconfigurable chassis. The motion planner uses a kinematic motion model and a terrain shape model to determine sequences of actions that minimize a cost function over vehicle attitude by modifying the shape of the velocity, curvature, and chassis configuration profiles. Simulation and field results are presented demonstrating the benefits of this technique on a prototype mobile robot for lunar excavation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Diaz-Calderon, A., Kelly, A.: Development of a terrain adaptive stability prediction system for mass articulating mobile robots. In: FSR, pp. 343–354 (2003)
Farritor, S., Hacot, H., Dubowsky, S.: Physics-based planning for planetary exploration, vol. 1, pp. 278–283 (May 1998)
Hirose, S., Tsukagoshi, H., Yoneda, K.: Normalized energy stability margin and its contour of walking vehicles on rough terrain, vol. 1, pp. 181–186 (2001)
Howard, T.M., Kelly, A.: Optimal rough terrain trajectory generation for wheeled mobile robots. IJRR 26(2), 141–166 (2007)
Iagnemma, K., Rzepniewski, A., Dubowsky, S., Pirjanian, P., Huntsberger, T., Schenker, P.: Mobile robot kinematic reconfigurability for rough-terrain (2000)
Ishigami, G., Nagatani, K., Yoshida, K.: Path planning for planetary exploration rovers and its evaluation based on wheel slip dynamics. In: Proceedings of the 2007 IEEE ICRA, April 2007, pp. 2361–2366 (2007)
JPL. JPL Robotics: System: SRR: Sample-Return Rover (2009)
Messuri, D., Klein, C.: Automatic body regulation for maintaining stability of a legged vehicle during rough-terrain locomotion. Robotics and Automation, IEEE Journal of 1(3), 132–141 (1985)
Nakamura, S., Faragalli, M., Mizukami, N., Nakatani, I., Kunii, Y., Kubota, T.: Wheeled robot with movable center of mass for traversing over rough terrain. In: Proceedings of the 2007 IEEE/RSJ IROS (2007)
Schenker, P.S., Pirjanian, P., Balaram, B., Ali, K.S., Trebi-ollennu, A., Huntsberger, T.L., Aghazarian, H., Kennedy, B.A., Baumgartner, E.T., Rzepniewski, A., Dubowsky, S.: Reconfigurable robots for all terrain exploration. In: Massachusetts Institute of Technology, pp. 419–6 (2000)
Tarokh, M., McDermott, G.: Kinematics modeling and analyses of articulated rovers. Technical Report CS/10/2005, University of California - San Diego (2005)
Wettergreen, D., Jonak, D., Kohanbash, D., Moreland, S.J., Spiker, S., Teza, J., Whittaker, W.L.: Design and experimentation of a rover concept for lunar crater resource survey. In: 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition (January 2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Furlong, P.M., Howard, T.M., Wettergreen, D. (2010). Model Predictive Control for Mobile Robots with Actively Reconfigurable Chassis. In: Howard, A., Iagnemma, K., Kelly, A. (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13408-1_42
Download citation
DOI: https://doi.org/10.1007/978-3-642-13408-1_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13407-4
Online ISBN: 978-3-642-13408-1
eBook Packages: EngineeringEngineering (R0)