Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Formal Language toward the Unification of Model Checking and Performance Evaluation

  • Conference paper
Analytical and Stochastic Modeling Techniques and Applications (ASMTA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6148))

  • 1015 Accesses

Abstract

There are currently a variety of logics used to describe properties of discrete–state systems, such as linear temporal logic (LTL) and computation tree logic (CTL), and of discrete–state stochastic systems, such as probabilistic CTL (PCTL) and continuous stochastic logic (CSL). While powerful, these logics are by definition limited to producing only true or false responses. In this work, we introduce a query language, CTML, that operates on real–valued quantities to reason over probabilistic systems. CTML is inspired by, and evolves from stochastic logic. It extends until and weak until with arithmetic operations on real values, while still preserving their conventional semantics of temporal logic. We derive mathematical algorithms for computing each of the operators, show how any PCTL property can be expressed in CTML, and illustrate the expressiveness of CTML with some example performance–related queries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. de Alfaro, L.: Temporal logics for the specification of performance and reliability. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 165–176. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  2. de Alfaro, L.: Computing minimum and maximum reachability times in probabilistic systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 66–81. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: Model checking discounted temporal properties. Theor. Comput. Sci. 345(1), 139–170 (2005)

    Article  MATH  Google Scholar 

  4. Andova, S., Hermanns, H., Katoen, J.P.: Discrete–time rewards model–checked. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104. Springer, Heidelberg (2004)

    Google Scholar 

  5. Aziz, A., Singhal, V., Balarin, F.: It usually works: The temporal logic of stochastic systems. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 155–165. Springer, Heidelberg (1995)

    Google Scholar 

  6. Baier, C., Cloth, L., Haverkort, B., Kuntz, M., Siegle, M.: Model checking Markov chains with actions and state labels. IEEE Trans. Softw. Eng. 33, 209–224 (2007)

    Article  Google Scholar 

  7. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: On the logical characterisation of performability properties. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 780–792. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model–checking algorithms for continuous–time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)

    Article  Google Scholar 

  9. Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems. Math. Oper. Res. 16(3), 580–595 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Clark, G., Gilmore, S., Hillston, J.: Specifying performance measures for PEPA. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 211–227. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  11. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)

    Google Scholar 

  12. Cohn, D.L.: Measure Theory. Birkhäuser, Boston (1980)

    MATH  Google Scholar 

  13. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verificiation. J. ACM 42(4), 857–907 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dijkstra, E.: Hierarchical ordering of sequential processes. Acta Inf. 1, 115–138 (1971)

    Article  MathSciNet  Google Scholar 

  15. Donatelli, S., Haddad, S., Sproston, J.: CSLTA: an expressive logic for continuous–time Markov chains. In: QEST 2007, pp. 31–40 (2007)

    Google Scholar 

  16. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6(5), 512–535 (1994)

    Article  MATH  Google Scholar 

  17. Harrison, P.G., Knottenbelt, W.J.: Passage time distributions in large Markov chains. SIGMETRICS Perf. Eval. Rev. 30(1), 77–85 (2002)

    Article  Google Scholar 

  18. Kemeny, J., Snell, J.: Finite Markov Chains. D.Van Nostrand, Princeton (1960)

    Google Scholar 

  19. Kwiatkowska, M.: Quantitative verification: models techniques and tools. In: ESEC-FSE 2007, pp. 449–458. ACM, New York (2007)

    Chapter  Google Scholar 

  20. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic model checking for performance and reliability analysis. SIGMETRICS Perf. Eval. Rev. 36(4), 40–45 (2009)

    Article  Google Scholar 

  21. Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance analysis of probabilistic timed automata using digital clocks. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 105–120. Springer, Heidelberg (2004)

    Google Scholar 

  22. Laroussinie, F., Sproston, J.: Model checking durational probabilistic systems. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 140–154. Springer, Heidelberg (2005)

    Google Scholar 

  23. Miner, A.S.: Implicit GSPN reachability set generation using decision diagrams. Perf. Eval. 56(1–4), 145–165 (2004)

    Article  Google Scholar 

  24. Muppala, J.K., Ciardo, G., Trivedi, K.S.: Modeling using stochastic reward nets. In: MASCOTS 1993, pp. 367–372, Society for Computer Simulation (1993)

    Google Scholar 

  25. Obal, W.D., Sanders, W.H.: State-space support for path-based reward variables. Perf. Eval. 35(3–4), 233–251 (1999)

    Article  MATH  Google Scholar 

  26. Stewart, W.: Introduction to the Numerical Solution of Markov Chains. Princeton Univ. Press, Princeton (1994)

    MATH  Google Scholar 

  27. Suto, T., Bradley, J.T., Knottenbelt, W.J.: Performance trees: Expressiveness and quantitative semantics. In: QEST 2007, pp. 41–50. IEEE Computer Society Press, Los Alamitos (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miner, A.S., Jing, Y. (2010). A Formal Language toward the Unification of Model Checking and Performance Evaluation. In: Al-Begain, K., Fiems, D., Knottenbelt, W.J. (eds) Analytical and Stochastic Modeling Techniques and Applications. ASMTA 2010. Lecture Notes in Computer Science, vol 6148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13568-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13568-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13567-5

  • Online ISBN: 978-3-642-13568-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics