Abstract
There are currently a variety of logics used to describe properties of discrete–state systems, such as linear temporal logic (LTL) and computation tree logic (CTL), and of discrete–state stochastic systems, such as probabilistic CTL (PCTL) and continuous stochastic logic (CSL). While powerful, these logics are by definition limited to producing only true or false responses. In this work, we introduce a query language, CTML, that operates on real–valued quantities to reason over probabilistic systems. CTML is inspired by, and evolves from stochastic logic. It extends until and weak until with arithmetic operations on real values, while still preserving their conventional semantics of temporal logic. We derive mathematical algorithms for computing each of the operators, show how any PCTL property can be expressed in CTML, and illustrate the expressiveness of CTML with some example performance–related queries.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
de Alfaro, L.: Temporal logics for the specification of performance and reliability. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 165–176. Springer, Heidelberg (1997)
de Alfaro, L.: Computing minimum and maximum reachability times in probabilistic systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 66–81. Springer, Heidelberg (1999)
de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: Model checking discounted temporal properties. Theor. Comput. Sci. 345(1), 139–170 (2005)
Andova, S., Hermanns, H., Katoen, J.P.: Discrete–time rewards model–checked. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104. Springer, Heidelberg (2004)
Aziz, A., Singhal, V., Balarin, F.: It usually works: The temporal logic of stochastic systems. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 155–165. Springer, Heidelberg (1995)
Baier, C., Cloth, L., Haverkort, B., Kuntz, M., Siegle, M.: Model checking Markov chains with actions and state labels. IEEE Trans. Softw. Eng. 33, 209–224 (2007)
Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: On the logical characterisation of performability properties. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 780–792. Springer, Heidelberg (2000)
Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model–checking algorithms for continuous–time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)
Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems. Math. Oper. Res. 16(3), 580–595 (1991)
Clark, G., Gilmore, S., Hillston, J.: Specifying performance measures for PEPA. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 211–227. Springer, Heidelberg (1999)
Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
Cohn, D.L.: Measure Theory. Birkhäuser, Boston (1980)
Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verificiation. J. ACM 42(4), 857–907 (1995)
Dijkstra, E.: Hierarchical ordering of sequential processes. Acta Inf. 1, 115–138 (1971)
Donatelli, S., Haddad, S., Sproston, J.: CSLTA: an expressive logic for continuous–time Markov chains. In: QEST 2007, pp. 31–40 (2007)
Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6(5), 512–535 (1994)
Harrison, P.G., Knottenbelt, W.J.: Passage time distributions in large Markov chains. SIGMETRICS Perf. Eval. Rev. 30(1), 77–85 (2002)
Kemeny, J., Snell, J.: Finite Markov Chains. D.Van Nostrand, Princeton (1960)
Kwiatkowska, M.: Quantitative verification: models techniques and tools. In: ESEC-FSE 2007, pp. 449–458. ACM, New York (2007)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic model checking for performance and reliability analysis. SIGMETRICS Perf. Eval. Rev. 36(4), 40–45 (2009)
Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance analysis of probabilistic timed automata using digital clocks. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 105–120. Springer, Heidelberg (2004)
Laroussinie, F., Sproston, J.: Model checking durational probabilistic systems. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 140–154. Springer, Heidelberg (2005)
Miner, A.S.: Implicit GSPN reachability set generation using decision diagrams. Perf. Eval. 56(1–4), 145–165 (2004)
Muppala, J.K., Ciardo, G., Trivedi, K.S.: Modeling using stochastic reward nets. In: MASCOTS 1993, pp. 367–372, Society for Computer Simulation (1993)
Obal, W.D., Sanders, W.H.: State-space support for path-based reward variables. Perf. Eval. 35(3–4), 233–251 (1999)
Stewart, W.: Introduction to the Numerical Solution of Markov Chains. Princeton Univ. Press, Princeton (1994)
Suto, T., Bradley, J.T., Knottenbelt, W.J.: Performance trees: Expressiveness and quantitative semantics. In: QEST 2007, pp. 41–50. IEEE Computer Society Press, Los Alamitos (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Miner, A.S., Jing, Y. (2010). A Formal Language toward the Unification of Model Checking and Performance Evaluation. In: Al-Begain, K., Fiems, D., Knottenbelt, W.J. (eds) Analytical and Stochastic Modeling Techniques and Applications. ASMTA 2010. Lecture Notes in Computer Science, vol 6148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13568-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-13568-2_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13567-5
Online ISBN: 978-3-642-13568-2
eBook Packages: Computer ScienceComputer Science (R0)