Abstract
Elevated Intracranial Pressure (ICP) is a significant cause of mortality and long-term functional damage in traumatic brain injury (TBI). Current ICP monitoring methods are highly invasive, presenting additional risks to the patient. This paper describes a computerized non-invasive screening method based on texture analysis of computed tomography (CT) scans of the brain, which may assist physicians in deciding whether to begin invasive monitoring. Quantitative texture features extracted using statistical, histogram and wavelet transform methods are used to characterize brain tissue windows in individual slices, and aggregated across the scan. Support Vector Machine (SVM) is then used to predict high or normal levels of ICP using the most significant features from the aggregated set. Results are promising, providing over 80% predictive accuracy and good separation of the two ICP classes, confirming the suitability of the approach and the predictive power of texture features in screening patients for high ICP.
Chapter PDF
Similar content being viewed by others
Keywords
References
Koch, M.A., Narayan, R.K., Timmons, S.D.: Traumatic Brain Injury. In: Merck manual online, http://www.merck.com/mmpe/sec21/ch310/ch310a.html (retrieved)
Castellano, G., Bonilha, L., Li, L.M., Cendes, F.: Texture Analysis of Medical Images. Clinical Radiology 59(12), 1061–1069 (2004)
Sucu, H.K., Gelal, F., Gokmen, M., Ozer, F.D., Tektas, S.: Can midline brain shift be used as a prognostic factor to predict postoperative restoration of consciousness in patients with chronic subdural hematoma? Surgical Neurology 66(2), 178–182 (2006)
Chen, E.L., Chung, P., Chen, C.L., Tsa, H.M., Chang, C.I.: An automated diagnostic system for CT liver image classification. IEEE Trans. Biomed. Eng. 45(6), 783–794 (1998)
Mir, A.H., Hanmandlu, M., Tandon, S.N.: Texture Analysis of CT Images. IEEE Eng. Med. Biology 14, 781–786 (1995)
Mougiakakou, S., Valvanis, I., Nikita, K.S., Nikita, A., Kelekis, D.: Characterization of CT liver lesions based on texture features and a multiple neural network classification scheme. In: 25th Int. Conf. of the IEEE Engineering in Medicine and Biology Society, vol. 2, pp. 1287–1290 (2003)
Yu, H., Caldwell, C., Mah, K., Poon, I., Balogh, J., MacKenzie, R., Khaouam, N., Tirona, R.: Automated Radiation Targeting in Head-and-Neck Cancer Using Region-Based Texture Analysis of PET and CT Images. International Journal of Radiation Oncology*Biology*Physics 75(2), 618–625 (2009)
Kabara, S., Gabbouj, M., Dastidar, P., Alaya-Cheikh, F., Ryymin, P., Lassonen, E.: CT Image Texture Analysis of Intracerebral Hemorrhage. In: 2003 Finnish Signal Processing Symposium (FINSIG’03), Tampere, Finland, pp. 190–194 (2003)
Chu, A., Sehgal, C.M., Greenleaf, J.F.: Use of gray value distribution of run lengths for texture analysis. Pattern Recognition Letters 11(6), 415–420 (1990)
Tang, X.: Texture information in run-length matrices. IEEE Trans. Image Proc. 7(11), 1602–1609 (1998)
Manthalkar, R., Biswas, P.K., Chatterji, B.N.: Rotation and scale invariant texture features using discrete wavelet packet transform. Pattern Recognition Letters 24(14), 2455–2462 (2003)
Kingsbury, N.: Complex Wavelets for Shift Invariant Analysis and Filtering of Signals. Applied and Computational Harmonic Analysis 10(3), 234–253 (2001)
Robnik-Sikonja, M., Kononeko, I.: An adaptation of relief for attribute estimation in regression. In: ICML’97: 14th International Conference on Machine Learning, pp. 296–304 (1997)
Weka 3: Data Mining Software in Java, http://www.cs.waikato.ac.nz/ml/weka/
Altman, D.G., Bland, J.M.: Diagnostic tests. 1: Sensitivity and specificity. British Medical Journal 308 (6943), 1552 (1994)
Ron, K., John George, H.: Wrapper for feature subset selection. Artificial Intelligence 97(1-2), 273–324 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, W. et al. (2010). Texture Analysis of Brain CT Scans for ICP Prediction. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D., Meunier, J. (eds) Image and Signal Processing. ICISP 2010. Lecture Notes in Computer Science, vol 6134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13681-8_66
Download citation
DOI: https://doi.org/10.1007/978-3-642-13681-8_66
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13680-1
Online ISBN: 978-3-642-13681-8
eBook Packages: Computer ScienceComputer Science (R0)