Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On-Board Monocular Vision System Pose Estimation through a Dense Optical Flow

  • Conference paper
Image Analysis and Recognition (ICIAR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6111))

Included in the following conference series:

Abstract

This paper presents a robust technique for estimating on-board monocular vision system pose. The proposed approach is based on a dense optical flow that is robust against shadows, reflections and illumination changes. A RANSAC based scheme is used to cope with the outliers in the optical flow. The proposed technique is intended to be used in driver assistance systems for applications such as obstacle or pedestrian detection. Experimental results on different scenarios, both from synthetic and real sequences, shows usefulness of the proposed approach.

This work has been partially supported by the Spanish Government under project TRA2007-62526/AUT; research programme Consolider-Ingenio 2010: MIPRCV (CSD2007-00018); and Catalan Government under project CTP 2008ITT 00001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Peden, M., Scurfield, R., Sleet, D., Mohan, D., Hyder, A., Jarawan, E., Mathers, C.: World Report on road traffic injury prevention. World Health Organization, Geneva (2004)

    Google Scholar 

  2. Coulombeau, P., Laurgeau, C.: Vehicle yaw, pitch, roll and 3D lane shape recovery by vision. In: Proc. IEEE Intelligent Vehicles Symposium, Versailles, France, pp. 619–625 (2002)

    Google Scholar 

  3. Liang, Y., Tyan, H., Liao, H., Chen, S.: Stabilizing image sequences taken by the camcorder mounted on a moving vehicle. In: Proc. IEEE Int. Conf. on Intelligent Transportation Systems, Shangai, China, pp. 90–95 (2003)

    Google Scholar 

  4. Bertozzi, M., Broggi, A., Carletti, M., Fascioli, A., Graf, T., Grisleri, P., Meinecke, M.: IR pedestrian detection for advaned driver assistance systems. In: Proc. 25th. Pattern Recognition Symposium, Magdeburg, Germany, pp. 582–590 (2003)

    Google Scholar 

  5. Nedevschi, S., Vancea, C., Marita, T., Graf, T.: Online extrinsic parameters calibration for stereovision systems used in far-range detection vehicle applications. IEEE Trans. on Intelligent Transportation Systems 8(4), 651–660 (2007)

    Article  Google Scholar 

  6. Labayrade, R., Aubert, D., Tarel, J.: Real time obstacle detection in stereovision on non flat road geometry through ‘V-disparity’ representation. In: Proc. IEEE Intelligent Vehicles Symposium, Versailles, France, pp. 646–651 (2002)

    Google Scholar 

  7. Bertozzi, M., Binelli, E., Broggi, A., Del Rose, M.: Stereo vision-based approaches for pedestrian detection. In: Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition, San Diego, USA (2005)

    Google Scholar 

  8. Labayrade, R., Aubert, D.: A single framework for vehicle roll, pitch, yaw estimation and obstacles detection by stereovision. In: Proc. IEEE Intelligent Vehicles Symposium, Columbus, OH, USA, pp. 31–36 (2003)

    Google Scholar 

  9. Sappa, A., Dornaika, F., Ponsa, D., Gerónimo, D., López, A.: An efficient approach to on-board stereo vision system pose estimation. IEEE Trans. on Intelligent Transportation Systems 9(3), 476–490 (2008)

    Article  Google Scholar 

  10. Dornaika, F., Sappa, A.: A featureless and stochastic approach to on-board stereo vision system pose. Image and Vision Computing 27(9), 1382–1393 (2009)

    Article  Google Scholar 

  11. Suzuki, T., Kanade, T.: Measurement of vehicle motion and orientation using optical flow. In: Proc. IEEE Int. Conf. on Intelligent Transportation Systems, Tokyo, Japan, pp. 25–30 (1999)

    Google Scholar 

  12. Stein, G., Mano, O., Shashua, A.: A robust method for computing vehicle ego-motion. In: IEEE Intelligent Vehicles Symposium, Dearborn Michigan, USA, pp. 362–368 (2000)

    Google Scholar 

  13. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L 1 optical flow. In: Proc. 29th Annual Symposium of the German Association for Pattern Recognition, Heidelberg, Germany, pp. 214–223 (2007)

    Google Scholar 

  14. Wedel, A., Pock, T., Zach, C., Cremers, D., Bischof, H.: An improved algorithm for TV-L1 optical flow. In: Proc. of the Dagstuhl Motion Workshop, Dagstuhl Castle, Germany, pp. 23–45 (2008)

    Google Scholar 

  15. Horn, B.K.P., Schunk, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  16. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1-2), 89–97 (2004)

    MathSciNet  Google Scholar 

  17. Zhaoxue, C., Pengfei, S.: Efficient method for camera calibration in traffic scenes. Electronics Letters 40(6), 368–369 (2004)

    Article  Google Scholar 

  18. Rasmussen, C.: Grouping dominant orientations for ill-structured road following. In: Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition, Washington, USA, pp. 470–477 (2004)

    Google Scholar 

  19. Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Graphics and Image Processing 24(6), 381–395 (1981)

    MathSciNet  Google Scholar 

  20. Vaudrey, T., Rabe, C., Klette, R., Milburn, J.: Differences between stereo and motion behaviour on synthetic and real-world stereo sequences. In: Proc. Image and Vision Computing New Zealand, Christchurch, New Zealand, pp. 1–6 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Onkarappa, N., Sappa, A.D. (2010). On-Board Monocular Vision System Pose Estimation through a Dense Optical Flow. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2010. Lecture Notes in Computer Science, vol 6111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13772-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13772-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13771-6

  • Online ISBN: 978-3-642-13772-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics