Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

II-LK – A Real-Time Implementation for Sparse Optical Flow

  • Conference paper
Image Analysis and Recognition (ICIAR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6111))

Included in the following conference series:

Abstract

In this paper we present an approach to speed up the computation of sparse optical flow fields by means of integral images and provide implementation details. Proposing a modification of the Lucas-Kanade energy functional allows us to use integral images and thus to speed up the method notably while affecting only slightly the quality of the computed optical flow. The approach is combined with an efficient scanline algorithm to reduce the computation of integral images to those areas where there are features to be tracked. The proposed method can speed up current surveillance algorithms used for scene description and crowd analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baker, S., Matthews, I.: Lucas-Kanade 20 Years on: A Unifying Framework. International Journal of Computer Vision 56, 221–255 (2004)

    Article  Google Scholar 

  2. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A Database and Evaluation Methodology for Optical Flow. In: IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  3. Birchfield, S., Pundlik, S.J.: Joint tracking of features and edges. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–6. IEEE Computer Society, Alaska (2008)

    Google Scholar 

  4. Bouguet, J.Y.: Pyramidal Implementation of the Lucas Kanade Feature Tracker - Description of the Algorithm. Technical report, Intel Corporation, Microprocessor Research Labs (1999)

    Google Scholar 

  5. Brostow, G.J., Cipolla, R.: Unsupervised Bayesian Detection of Independent Motion in Crowds. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 594–601 (2006)

    Google Scholar 

  6. Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., Schnörr, C.: Variational optical flow computation in real time. IEEE Transactions on Image Processing 14, 608–615 (2005)

    Article  MathSciNet  Google Scholar 

  7. Bruhn, A., Weickert, J., Schnörr, C.: Combining the Advantages of Local and Global Optic Flow Methods. In: Proceedings of the 24th DAGM Symposium on Pattern Recognition, pp. 454–462. Springer, London (2002)

    Google Scholar 

  8. Crow, F.C.: Summed-area tables for texture mapping. In: SIGGRAPH 1984: Proceedings of the 11th annual conference on Computer graphics and interactive techniques, pp. 207–212. ACM, New York (1984)

    Chapter  Google Scholar 

  9. Ercan, A.O., Guibas, L.J.: Object tracking in the presence of occlusions via a camera network. In: IPSN 2007: Proceedings of the 6th International Conference on Information Processing in Sensor Networks, pp. 509–518. ACM Press, New York (2007)

    Chapter  Google Scholar 

  10. Hong, H.S., Chung, M.J.: 3D pose and camera parameter tracking algorithm based on Lucas-Kanade image alignment algorithm. In: International Conference on Control, Automation and Systems, ICCAS, pp. 548–551 (2007)

    Google Scholar 

  11. Landgraf, T., Rojas, R.: Tracking honey bee dances from sparse optical flow fields. Technical report (2007)

    Google Scholar 

  12. Lucas, B.D., Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision. In: 7th International Joint Conference on Artificial Intelligence, pp. 674–679. William Kaufmann, Vancouver (1981)

    Google Scholar 

  13. Paul, V., Michael, J.: Robust Real-time Object Detection. International Journal of Computer Vision 57, 137–154 (2004)

    Article  Google Scholar 

  14. Saxena, S., Brémont, F., Thonnat, M., Ma, R.: Crowd Behavior Recogniton for Video Surveillance. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 970–981. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Shi, J., Tomasi, C.: Good Features to Track. Technical report, Cornell University (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Senst, T., Eiselein, V., Sikora, T. (2010). II-LK – A Real-Time Implementation for Sparse Optical Flow. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2010. Lecture Notes in Computer Science, vol 6111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13772-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13772-3_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13771-6

  • Online ISBN: 978-3-642-13772-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics