Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Facial Expression Recognition Using Spatiotemporal Boosted Discriminatory Classifiers

  • Conference paper
Image Analysis and Recognition (ICIAR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6111))

Included in the following conference series:

Abstract

This paper introduces a novel approach to facial expression recognition in video sequences. Low cost contour features are introduced to effectively describe the salient features of the face. Temporalboost is used to build classifiers which allow temporal information to be utilized for more robust recognition. Weak classifiers are formed by assembling edge fragments with chamfer scores. Detection is efficient as weak classifiers are evaluated using an efficient look up to a chamfer image. An ensemble framework is presented with all-pairs binary classifiers. An error correcting support vector machine (SVM) is utilized for final classification. The results of this research is a 6 class classifier (joy, surprise, fear, sadness, anger and disgust ) with recognition results of up to 95%. Extensive experiments on the Cohn-kanade database illustrate that this approach is effective for facial exression analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barrow, H.G., Tenenbaum, J.M., Bolles, R.C., Wolf, H.C.: Parametric correspondence and chamfer matching: two new techniques for image matching. In: IJCAI 1977: Proceedings of the 5th International Joint Conference on Artificial Intelligence, pp. 659–663. Morgan Kaufmann Publishers Inc., San Francisco (1977)

    Google Scholar 

  2. Bassili, J.N.: Emotion recognition: the role of facial movement and the relative importance of upper and lower areas of the face. Journal of personality and social psychology 37(11), 2049–2058 (1979)

    Article  Google Scholar 

  3. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  4. Chang, Y., Hu, C., Turk, M.: Probabilistic expression analysis on manifolds. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 520–527 (2004)

    Google Scholar 

  5. Cohen, I., Garg, A., Huang, T.S.: Emotion recognition from facial expressions using multilevel hmm. In: Neural Information Processing Systems (2000)

    Google Scholar 

  6. Crammer, K., Singer, Y., Cristianini, N., Shawe-taylor, J., Williamson, B.: On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research 2, 2001 (2001)

    Google Scholar 

  7. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Ekman, P., Friesen, W.V.: Constants across cultures in the face and emotion. Journal of Personality and Social Psychology, 124–129 (1971)

    Google Scholar 

  9. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: International Conference on Machine Learning, pp. 148–156 (1996)

    Google Scholar 

  10. Gavrila, D.: Pedestrian detection from a moving vehicle. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 37–49. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Kanade, T., Tian, Y., Cohn, J.F.: Comprehensive database for facial expression analysis. In: FG 2000: Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition 2000, Washington, DC, USA, p. 46. IEEE Computer Society, Los Alamitos (2000)

    Google Scholar 

  12. Mignault, A., Chaudhuri, A.: The many faces of a neutral face: Head tilt and perception of dominance and emotion. Journal of Nonverbal Behavior 27(2), 111–132 (2003)

    Article  Google Scholar 

  13. Moore, S., Bowden, R.: Automatic facial expression recognition using boosted discriminatory classifiers. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 71–83. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Oliver, N., Pentland, A., Brard, F.: Lafter: Lips and face real time tracker with facial expression recognition. In: Proc. CVPR, pp. 123–129 (1997)

    Google Scholar 

  15. Petridis, S., Pantic, M.: Audiovisual laughter detection based on temporal features. In: IMCI 2008: Proceedings of the 10th International Conference on Multimodal Interfaces, pp. 37–44. ACM, New York (2008)

    Chapter  Google Scholar 

  16. Shan, C.F., Gong, S.G., McOwan, P.W.: Dynamic facial expression recognition using a bayesian temporal manifold model. In: BMVC 2006, pp. 297–306 (2006)

    Google Scholar 

  17. Sheerman-Chase, T., Ong, E.-J., Bowden, R.: Feature selection of facial displays for detection of non verbal communication in natural conversation. In: IEEE International Workshop on Human-Computer Interaction, Kyoto (October 2009)

    Google Scholar 

  18. Smith, P., da Vitoria Lobo, N., Shah, M.: Temporalboost for event recognition. In: ICCV 2005: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV 2005), Washington, DC, USA, vol. 1, pp. 733–740. IEEE Computer Society, Los Alamitos (2005)

    Chapter  Google Scholar 

  19. Yang, P., Liu, Q.S., Cui, X.Y., Metaxas, D.N.: Facial expression recognition using encoded dynamic features, pp. 1–8 (2008)

    Google Scholar 

  20. Tian, Y., Kanade, T., Cohn, J.: Facial expression analysis. In: Handbook of Face Recognition, ch. 11, pp. 247–275. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moore, S., Jon Ong, E., Bowden, R. (2010). Facial Expression Recognition Using Spatiotemporal Boosted Discriminatory Classifiers. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2010. Lecture Notes in Computer Science, vol 6111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13772-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13772-3_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13771-6

  • Online ISBN: 978-3-642-13772-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics