Abstract
A new algorithm for image quality assessment based on entropy of Gabor filtered images is proposed. A bank of Gabor filters is used to extract contours and directional textures. Then, the entropy of the images obtained after the Gabor filtering is calculated. Finally, a metric for the image quality is proposed. It is important to note that the quality of the image is image content-dependent, so our metric must be applied to variations of the same scene, like in image acquisition and image processing tasks. This process makes up an interesting tool to evaluate the quality of image acquisition systems or to adjust them to obtain the best possible images for further processing tasks. An image database has been created to test the algorithm with series of images degraded by four methods that simulate image acquisition usual problems. The presented results show that the proposed method accurately measures image quality, even with slight degradations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wang, Z., Bovik, A.C., Lu, L.: Why Is Image Quality Assessment so Difficult? In: Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, vol. 4, pp. 3313–3316 (2002)
Wang, Z., Sheikh, H.R., Bovik, A.C.: No-reference perceptual quality assessment of JPEG compressed images. In: Proc. Int. Conf. on Image Processing, vol. 1, pp. 477–480 (2002)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Processing 13, 600–612 (2004)
Suresh, S., Babu, R.V., Kim, H.J.: No-reference image quality assessment using modified extreme learning machine classifier. Applied Soft Computing 9(2), 541–552 (2009)
Kirsanova, E.N., Sadovsky, M.G.: Entropy approach in the analysis of anisotropy of digital images. Open Syst. Inf. Dyn. 9, 239–250 (2004)
Gabarda, S., Cristóbal, G.: Blind image quality assessment through anisotropy. Journal of the Optical Society of America 24(12), 42–51 (2007)
Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recognition 24(12), 1167–1186 (1991)
Jain, A.K., Ratha, N.R., Lakhsmanan, S.: Object detection using Gabor filters. Pattern Recognition 30(2), 295–309 (1997)
Bianconi, F., Fernández, A.: Evaluation of the effects of Gabor filter parameters on texture classification. Pattern Recognition 40, 3325–3335 (2007)
Taylor, C.C., Pizlo, Z., Allebach, J.P., Bouman, C.A.: Image Quality Assessment with a Gabor pyramid model of the human visual system. In: Proc. SPIE Int. Symposium on Electronic Imaging Science and Technology, vol. 3016, pp. 58–69 (1997)
Zhai, G., Zhang, W., Yang, X., Yao, S., Xu, Y.: GES: A new image quality assessment metric based on energy features in Gabor Transform Domain. In: IEEE Proc. Int. Symposium on Circuit and Systems, pp. 1715–1718 (2006)
Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America 2(7), 1160–1169 (1985)
Shannon, C.E.: The Mathematical Theory of Communication. The Bell System Technical Journal 27, 379–423, 623–656 (1948)
Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: LIVE Image Quality Assessment Database Release 2, http://live.ece.utexas.edu/research/quality
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vazquez-Fernandez, E., Dacal-Nieto, A., Martin, F., Torres-Guijarro, S. (2010). Entropy of Gabor Filtering for Image Quality Assessment. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2010. Lecture Notes in Computer Science, vol 6111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13772-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-13772-3_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13771-6
Online ISBN: 978-3-642-13772-3
eBook Packages: Computer ScienceComputer Science (R0)