Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Type-II Optimal Polynomial Bases

  • Conference paper
Arithmetic of Finite Fields (WAIFI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6087))

Included in the following conference series:

Abstract

In the 1990s and early 2000s several papers investigated the relative merits of polynomial-basis and normal-basis computations for F\(_{2^n}\). Even for particularly squaring-friendly applications, such as implementations of Koblitz curves, normal bases fell behind in performance unless a type-I normal basis existed for F\(_{2^n}\).

In 2007 Shokrollahi proposed a new method of multiplying in a type-II normal basis. Shokrollahi’s method efficiently transforms the normal-basis multiplication into a single multiplication of two size-(n + 1) polynomials.

This paper speeds up Shokrollahi’s method in several ways. It first presents a simpler algorithm that uses only size-n polynomials. It then explains how to reduce the transformation cost by dynamically switching to a ‘type-II optimal polynomial basis’ and by using a new reduction strategy for multiplications that produce output in type-II polynomial basis.

As an illustration of its improvements, this paper explains in detail how the multiplication overhead in Shokrollahi’s original method has been reduced by a factor of 1.4 in a major cryptanalytic computation, the ongoing attack on the ECC2K-130 Certicom challenge. The resulting overhead is also considerably smaller than the overhead in a traditional low-weight-polynomial-basis approach. This is the first state-of-the-art binary-elliptic-curve computation in which type-II bases have been shown to outperform traditional low-weight polynomial bases.

Permanent ID of this document: 90995f3542ee40458366015df5f2b9de. Date of this document: 2010.04.12. This work has been supported in part by the European Commission through the ICT Programme under Contract ICT–2007–216676 ECRYPT-II and in part by the National Science Foundation under grant ITR–0716498.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bailey, D.V., Batina, L., Bernstein, D.J., Birkner, P., Bos, J.W., Chen, H.-C., Cheng, C.-M., van Damme, G., de Meulenaer, G., Dominguez Perez, L.J., Fan, J., Güneysu, T., Gurkaynak, F., Kleinjung, T., Lange, T., Mentens, N., Niederhagen, R., Paar, C., Regazzoni, F., Schwabe, P., Uhsadel, L., Van Herrewege, A., Yang, B.-Y.: Breaking ECC2K-130. Cryptology ePrint Archive, Report 2009/541 (2009), http://eprint.iacr.org/2009/541

  2. Bernstein, D.J.: Batch binary Edwards. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 317–336. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Bernstein, D.J.: Optimizing linear maps modulo 2. In: Workshop Record of SPEED-CC: Software Performance Enhancement for Encryption and Decryption and Cryptographic Compilers, pp. 3–18 (2009), http://cr.yp.to/papers.html#linearmod2

  4. Bolotov, A.A., Gashkov, S.B.: On a quick multiplication in normal bases of finite fields. Discrete Mathematics and Its Applications 11, 327–356 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brauer, A.T.: On addition chains. Bulletin of the American Mathematical Society 45, 736–739 (1939)

    Article  MathSciNet  Google Scholar 

  6. Certicom. Certicom ECC challenge (1997), http://www.certicom.com/images/pdfs/cert_ecc_challenge.pdf

  7. Clift, N.: Hansen chains do not always produce optimum addition chains. Posting to sci.math (July 31, 2005), http://sci.tech-archive.net/Archive/sci.math/2005-08/msg00447.html

  8. Fan, J., Bailey, D.V., Batina, L., Güneysu, T., Paar, C., Verbauwhede, I.: Breaking elliptic curves cryptosystems using reconfigurable hardware (2010)

    Google Scholar 

  9. Fan, H., Hasan, M.A.: Subquadratic computational complexity schemes for extended binary field multiplication using optimal normal bases. IEEE Transactions on Computers 56, 1435–1437 (2007)

    Article  MathSciNet  Google Scholar 

  10. Gao, S., von zur Gathen, J., Panario, D.: Gauss periods and fast exponentiation in finite fields (extended abstract). In: Baeza-Yates, R.A., Goles, E., Poblete, P.V. (eds.) LATIN 1995. LNCS, vol. 911, pp. 311–322. Springer, Heidelberg (1995)

    Google Scholar 

  11. Gao, S., von zur Gathen, J., Panario, D., Shoup, V.: Algorithms for exponentiation in finite fields. Journal of Symbolic Computation 29(6), 879–889 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hansen, W.: Zum Scholz–Brauerschen Problem. Journal für die reine und angewandte Mathematik (Crelles Journal) 202, 129–136 (1959) (in German)

    Article  MATH  Google Scholar 

  13. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in GF(2m) using normal bases. Information and Computation 78(3), 171–177 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Itoh, T., Tsujii, S.: Structure of parallel multipliers for a class of fields GF(2m). Information and Computation 83(1), 21–40 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Knuth, D.E.: The art of computer programming, volume 1: Fundamental algorithms, 3rd edn. Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley Publishing Company, Reading (1997)

    Google Scholar 

  16. Knuth, D.E.: The art of computer programming, volume 2: Seminumerical algorithms, 3rd edn. Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley Publishing Company, Reading (1997)

    Google Scholar 

  17. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation 48, 243–264 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mullin, R.C., Onyszchuk, I.M., Vanstone, S.A., Wilson, R.M.: Optimal normal bases in GF(p n). Discrete Applied Mathematics 22(2), 149–161 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Nöcker, M.: Data structures for parallel exponentiation in finite fields. PhD thesis, Universität Paderborn (2001), http://math-www.uni-paderborn.de/~aggathen/Publications/noc01.ps

  20. Shokrollahi, J.: Efficient implementation of elliptic curve cryptography on FPGAs. PhD thesis, Universität Bonn (2007), http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2007/shokrollahi_jamshid/0960.pdf

  21. von zur Gathen, J., Nöcker, M.: Computing special powers in finite fields (extended abstract). In: Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation, ISSAC ’99, Vancouver, B.C., Canada, July 29–31, pp. 83–90 (1999)

    Google Scholar 

  22. von zur Gathen, J., Shokrollahi, A., Shokrollahi, J.: Efficient multiplication using type 2 optimal normal bases. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 55–68. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bernstein, D.J., Lange, T. (2010). Type-II Optimal Polynomial Bases. In: Hasan, M.A., Helleseth, T. (eds) Arithmetic of Finite Fields. WAIFI 2010. Lecture Notes in Computer Science, vol 6087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13797-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13797-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13796-9

  • Online ISBN: 978-3-642-13797-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics