Abstract
In the 1990s and early 2000s several papers investigated the relative merits of polynomial-basis and normal-basis computations for F\(_{2^n}\). Even for particularly squaring-friendly applications, such as implementations of Koblitz curves, normal bases fell behind in performance unless a type-I normal basis existed for F\(_{2^n}\).
In 2007 Shokrollahi proposed a new method of multiplying in a type-II normal basis. Shokrollahi’s method efficiently transforms the normal-basis multiplication into a single multiplication of two size-(n + 1) polynomials.
This paper speeds up Shokrollahi’s method in several ways. It first presents a simpler algorithm that uses only size-n polynomials. It then explains how to reduce the transformation cost by dynamically switching to a ‘type-II optimal polynomial basis’ and by using a new reduction strategy for multiplications that produce output in type-II polynomial basis.
As an illustration of its improvements, this paper explains in detail how the multiplication overhead in Shokrollahi’s original method has been reduced by a factor of 1.4 in a major cryptanalytic computation, the ongoing attack on the ECC2K-130 Certicom challenge. The resulting overhead is also considerably smaller than the overhead in a traditional low-weight-polynomial-basis approach. This is the first state-of-the-art binary-elliptic-curve computation in which type-II bases have been shown to outperform traditional low-weight polynomial bases.
Permanent ID of this document: 90995f3542ee40458366015df5f2b9de. Date of this document: 2010.04.12. This work has been supported in part by the European Commission through the ICT Programme under Contract ICT–2007–216676 ECRYPT-II and in part by the National Science Foundation under grant ITR–0716498.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bailey, D.V., Batina, L., Bernstein, D.J., Birkner, P., Bos, J.W., Chen, H.-C., Cheng, C.-M., van Damme, G., de Meulenaer, G., Dominguez Perez, L.J., Fan, J., Güneysu, T., Gurkaynak, F., Kleinjung, T., Lange, T., Mentens, N., Niederhagen, R., Paar, C., Regazzoni, F., Schwabe, P., Uhsadel, L., Van Herrewege, A., Yang, B.-Y.: Breaking ECC2K-130. Cryptology ePrint Archive, Report 2009/541 (2009), http://eprint.iacr.org/2009/541
Bernstein, D.J.: Batch binary Edwards. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 317–336. Springer, Heidelberg (2009)
Bernstein, D.J.: Optimizing linear maps modulo 2. In: Workshop Record of SPEED-CC: Software Performance Enhancement for Encryption and Decryption and Cryptographic Compilers, pp. 3–18 (2009), http://cr.yp.to/papers.html#linearmod2
Bolotov, A.A., Gashkov, S.B.: On a quick multiplication in normal bases of finite fields. Discrete Mathematics and Its Applications 11, 327–356 (2001)
Brauer, A.T.: On addition chains. Bulletin of the American Mathematical Society 45, 736–739 (1939)
Certicom. Certicom ECC challenge (1997), http://www.certicom.com/images/pdfs/cert_ecc_challenge.pdf
Clift, N.: Hansen chains do not always produce optimum addition chains. Posting to sci.math (July 31, 2005), http://sci.tech-archive.net/Archive/sci.math/2005-08/msg00447.html
Fan, J., Bailey, D.V., Batina, L., Güneysu, T., Paar, C., Verbauwhede, I.: Breaking elliptic curves cryptosystems using reconfigurable hardware (2010)
Fan, H., Hasan, M.A.: Subquadratic computational complexity schemes for extended binary field multiplication using optimal normal bases. IEEE Transactions on Computers 56, 1435–1437 (2007)
Gao, S., von zur Gathen, J., Panario, D.: Gauss periods and fast exponentiation in finite fields (extended abstract). In: Baeza-Yates, R.A., Goles, E., Poblete, P.V. (eds.) LATIN 1995. LNCS, vol. 911, pp. 311–322. Springer, Heidelberg (1995)
Gao, S., von zur Gathen, J., Panario, D., Shoup, V.: Algorithms for exponentiation in finite fields. Journal of Symbolic Computation 29(6), 879–889 (2000)
Hansen, W.: Zum Scholz–Brauerschen Problem. Journal für die reine und angewandte Mathematik (Crelles Journal) 202, 129–136 (1959) (in German)
Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in GF(2m) using normal bases. Information and Computation 78(3), 171–177 (1988)
Itoh, T., Tsujii, S.: Structure of parallel multipliers for a class of fields GF(2m). Information and Computation 83(1), 21–40 (1989)
Knuth, D.E.: The art of computer programming, volume 1: Fundamental algorithms, 3rd edn. Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley Publishing Company, Reading (1997)
Knuth, D.E.: The art of computer programming, volume 2: Seminumerical algorithms, 3rd edn. Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley Publishing Company, Reading (1997)
Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation 48, 243–264 (1987)
Mullin, R.C., Onyszchuk, I.M., Vanstone, S.A., Wilson, R.M.: Optimal normal bases in GF(p n). Discrete Applied Mathematics 22(2), 149–161 (1989)
Nöcker, M.: Data structures for parallel exponentiation in finite fields. PhD thesis, Universität Paderborn (2001), http://math-www.uni-paderborn.de/~aggathen/Publications/noc01.ps
Shokrollahi, J.: Efficient implementation of elliptic curve cryptography on FPGAs. PhD thesis, Universität Bonn (2007), http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2007/shokrollahi_jamshid/0960.pdf
von zur Gathen, J., Nöcker, M.: Computing special powers in finite fields (extended abstract). In: Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation, ISSAC ’99, Vancouver, B.C., Canada, July 29–31, pp. 83–90 (1999)
von zur Gathen, J., Shokrollahi, A., Shokrollahi, J.: Efficient multiplication using type 2 optimal normal bases. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 55–68. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bernstein, D.J., Lange, T. (2010). Type-II Optimal Polynomial Bases. In: Hasan, M.A., Helleseth, T. (eds) Arithmetic of Finite Fields. WAIFI 2010. Lecture Notes in Computer Science, vol 6087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13797-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-13797-6_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13796-9
Online ISBN: 978-3-642-13797-6
eBook Packages: Computer ScienceComputer Science (R0)