Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Parallel between Extended Formal Concept Analysis and Bipartite Graphs Analysis

  • Conference paper
Computational Intelligence for Knowledge-Based Systems Design (IPMU 2010)

Abstract

The paper offers a parallel between two approaches to conceptual clustering, namely formal concept analysis (augmented with the introduction of new operators) and bipartite graph analysis. It is shown that a formal concept (as defined in formal concept analysis) corresponds to the idea of a maximal bi-clique, while a “conceptual world” (defined through a Galois connection associated of the new operators) is a disconnected sub-graph in a bipartite graph. The parallel between formal concept analysis and bipartite graph analysis is further exploited by considering “approximation” methods on both sides. It leads to suggests new ideas for providing simplified views of datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albert, R., Barabási, A.: Statistical mechanics of complex networks (2001)

    Google Scholar 

  2. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  3. Barber, M.J.: Modularity and community detection in bipartite networks. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 76(6) (December 2007)

    Google Scholar 

  4. Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  5. Delvenne, J.-C., Yaliraki, S.N., Barahona, M.: Stability of graph communities across time scales. 0812.1811 (December 2008)

    Google Scholar 

  6. Djouadi, Y., Dubois, D., Prade, H.: Differentes extensions floues de l’analyse formelle de concepts. In: Actes Rencontres sur la Logique Floue et ses Applications (LFA’09), Annecy (November 2009)

    Google Scholar 

  7. Djouadi, Y., Dubois, D., Prade, H.: On the possible meanings of degrees when making formal concept analysis fuzzy. In: Eurofuse workshop Preference modelling and decision analysis, Pampelune, pp. 253–258 (2009)

    Google Scholar 

  8. Dubois, D., Dupin de Saint-Cyr, F., Prade, H.: A possibility theoretic view of formal concept analysis. Fundamenta Informaticae 75(1), 195–213 (2007)

    MATH  MathSciNet  Google Scholar 

  9. Dubois, D., Prade, H.: Possibility theory and formal concept analysis in information systems. In: Proc. 13th International Fuzzy Systems Association World Congress IFSA-EUSFLAT 2009, Lisbon (July 2009)

    Google Scholar 

  10. Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5) (2010)

    Google Scholar 

  11. Ganter, B., Stumme, G., Wille, R.: Formal Concept Analysis: Foundations and Applications. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  12. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  13. Gaume, B.: Balades aléatoires dans les petits mondes lexicaux. I3 Information Interaction Intelligence 4(2) (2004)

    Google Scholar 

  14. Gaume, B., Mathieu, F.: PageRank induced topology for real-world networks. Complex Systems (to appear)

    Google Scholar 

  15. Latapy, M., Magnien, C., Del Vecchio, N.: Basic notions for the analysis of large two-mode networks. Social Networks 30(1), 31–48 (2008)

    Article  Google Scholar 

  16. Lehmann, S., Schwartz, M., Hansen, L.K.: Biclique communities. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 78(1) (2008)

    Google Scholar 

  17. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Okubo, Y., Haraguchi, M.: Finding Top-N pseudo formal concepts with core intents. In: Proceedings of the 6th International Conference on Machine Learning and Data Mining in Pattern Recognition, Leipzig, Germany, pp. 479–493 (2009)

    Google Scholar 

  19. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association rules using closed itemset lattices. Information Systems 24(1), 25–46 (1999)

    Article  Google Scholar 

  20. Pons, P., Latapy, M.: Computing communities in large networks using random walks (long version). Journal of Graph Algorithms and Applications (JGAA) 10(2), 191–218 (2006)

    MATH  MathSciNet  Google Scholar 

  21. Porter, M., Onnela, J.P., Mucha, P.J.: J Mucha. Communities in networks. Notices of the American Mathematical Society 56(9), 1082–1097 (2009)

    MATH  MathSciNet  Google Scholar 

  22. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences 105(4), 1118–1123 (2008)

    Article  Google Scholar 

  23. Roth, C., Bourgine, P.: Epistemic communities: Description and hierarchic categorization. Mathematical Population Studies 12, 107–130 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)

    Article  MathSciNet  Google Scholar 

  25. Watts, D., Strogatz, S.: Collective dynamics of’small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gaume, B., Navarro, E., Prade, H. (2010). A Parallel between Extended Formal Concept Analysis and Bipartite Graphs Analysis. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds) Computational Intelligence for Knowledge-Based Systems Design. IPMU 2010. Lecture Notes in Computer Science(), vol 6178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14049-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14049-5_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14048-8

  • Online ISBN: 978-3-642-14049-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics