Abstract
A method to deform non-planar parametric surfaces based on B-splines is presented. To develop this method, an energy functional and its variational formulation are introduced. The deformation of the non-planar surface is made moving the control points of the surface. In order to do that, the space will be discretized and a ordinary differential equation has to be solved. To do it, an analytical solution will be used taking into account the features of B-splines as a finite elements. Our method will be fast because only a reduced number of control points will be moved instead of all the surface points. So, our method can be used to make simulations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cohen, I.: Modèles Déformables 2-D et 3-D: Application à la Segmentation d’Images Médicales. PhD thesis, Université Paris IX, Dauphine (1992)
Cox, M.G.: The numerical evaluation of B -splines. IMA Journal of Applied Mathematic 10(2), 134–149 (1972)
de Boor, C.: A practical guide to splines. Springer, New York (1978)
Farin, G.: Curves and Surfaces for Computer-Aided Geometric Desing: A Practical Guide. Academic Press, London (1997)
González-Hidalgo, M., Jaume Capó, A., Mir, A., Nicolau-Bestardo, G.: Analytical simulation of B -spline surfaces deformation. In: Perales, F.J., Fisher, R.B. (eds.) AMDO 2008. LNCS, vol. 5098, pp. 338–348. Springer, Heidelberg (2008)
González-Hidalgo, M., Mir, A., Nicolau, G.: An evolution model of parametric surface deformation using finite elements based on B -splines. In: Proceedings of CompImage 2006 Conference, Computational Modelling of Objects Represented in Images: Fundamentals, Methods and Applications, Coimbra, Portugal (2006)
González-Hidalgo, M., Mir, A., Nicolau, G.: Dynamic parametric surface deformation using finite elements based on B-splines. International Journal for Computational Vision and Biomechanics 1(2), 151–611 (2008)
Hawkins, K., Astle, D.: OpenGL game programming. Course Technology PTR, 1st edn. (May 1, 2002); Premier Press (2004)
Höllig, K.: Finite element methods with B-splines. Frontiers in Applied Mathematics. SIAM, Philadelphya (2003)
Montagnat, J., Delingette, H., Ayache, N.: A review of deformable surfaces: topology, geometry and deformation. Image and Vision Computing 19(14), 1023–1040 (2001)
Piegl, W., Tiller, L.: The NURBS book. Springer Verlag, Berlin (1997)
Terzopoulos, D.: Regularization of inverse visual problems involving discontinuities. IEEE PAMI 8(4), 413–424 (1986)
Wernecke, J.: The Inventor Toolmaker: Extending Open Inventor, release 2. Addison–Wesley, Reading (1994)
Wernecke, J.: The Inventor Mentor: Programming Object–oriented 3D graphics with Open Inventor release 2. Addison–Wesley, Reading (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
González-Hidalgo, M., Jaume-i-Capó, A., Mir, A., Nicolau-Bestard, G. (2010). Analytical Simulation of Non-planar B-Spline Surfaces Deformation. In: Perales, F.J., Fisher, R.B. (eds) Articulated Motion and Deformable Objects. AMDO 2010. Lecture Notes in Computer Science, vol 6169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14061-7_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-14061-7_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14060-0
Online ISBN: 978-3-642-14061-7
eBook Packages: Computer ScienceComputer Science (R0)